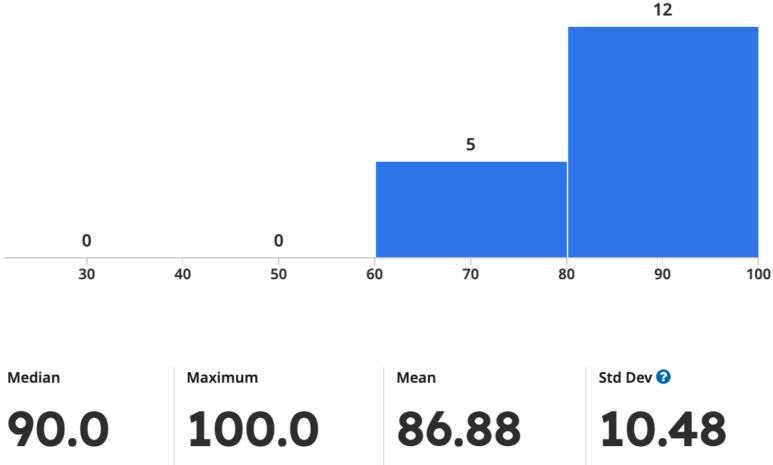


94-775 Unstructured Data Analytics

Lecture 11: Hyperparameter tuning; intro to neural nets & deep learning

Nearly all slides by George H. Chen with a few by Phillip Isola

Quiz 2



As I intended, Quiz 2 was easier than Quiz 1

Remember: letter grades are assigned based on a curve

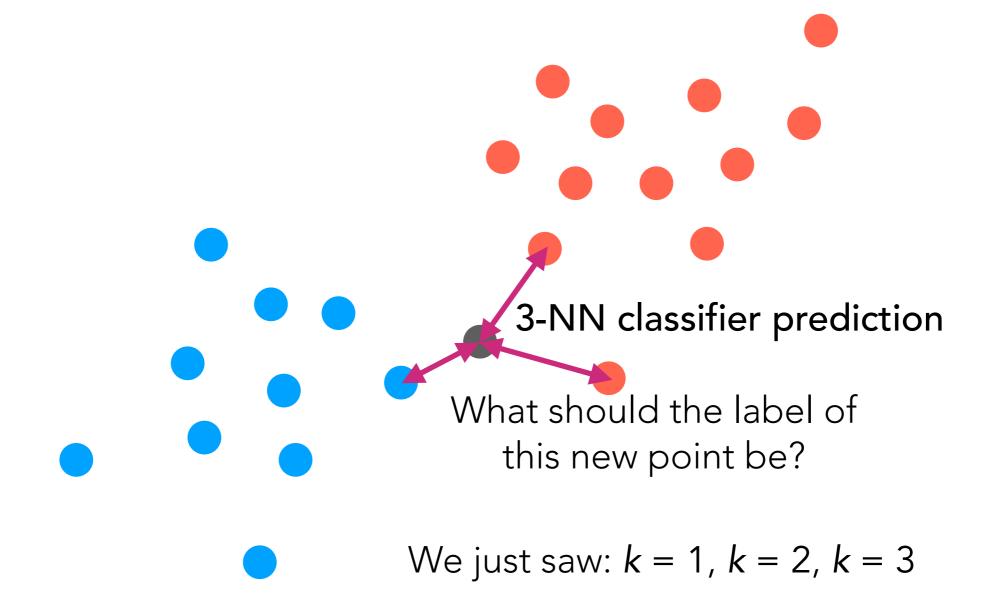
Solutions are in Canvas -> Files -> "Quiz 2 solutions.pdf"

Regrade requests (use Gradescope's regrade request feature) are due **Friday April 18, 11:59pm** (for if you think there's a genuine grading error) Reminder: if you get instructor-endorsed posts in Piazza, you could earn up to 20 bonus points on your Quiz 2!

We plan on shutting down the Piazza forum on Monday April 28, 11:59pm

Please get your instructor endorsements by then!

(Flashback) Example: k-NN Classification



What happens if k = n?

(Flashback)

How do we choose k?

What I'll describe next can be used to select hyperparameter(s) for any prediction method

Fundamental question: How do we assess how good a prediction method is?

(Flashback) Hyperparameters vs. Parameters

- We fit a model's parameters to training data (terminology: we "learn" the parameters)
- We pick values of hyperparameters and they do *not* automatically get fit to training data
- Example: Gaussian mixture model
 - Hyperparameter: number of clusters k
 - Parameters: cluster probabilities, means, covariance matrices
- Example: *k*-NN classification
 - Hyperparameter: number of nearest neighbors k
 - Parameters: N/A

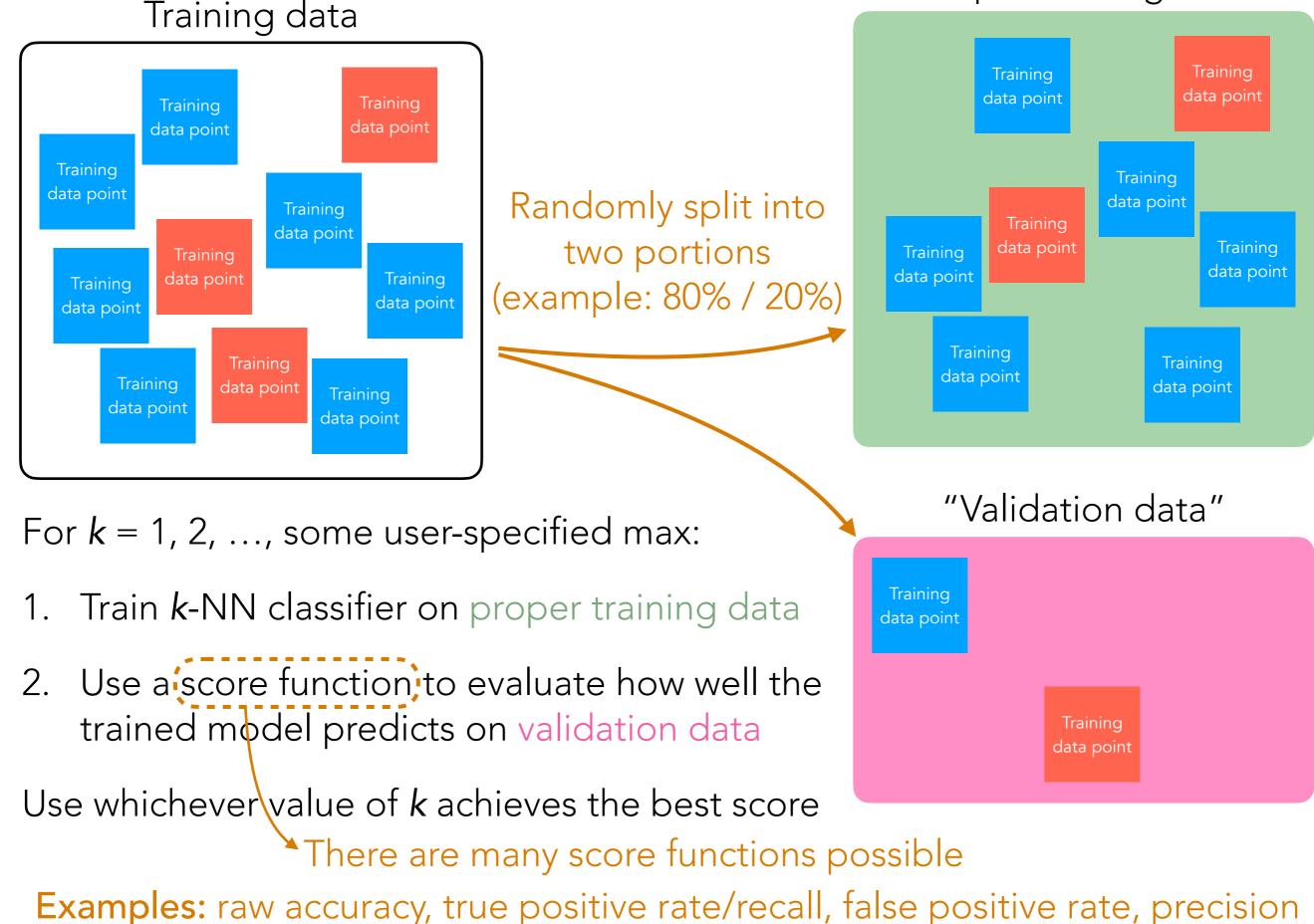
Actually, there's another hyperparameter: distance function to use (for simplicity, we assume Euclidean distance for now) Major assumption: training and test data "look alike" (technically: training and test data are i.i.d. sampled from the same underlying distribution)

Prediction is harder when training and test data appear quite different!



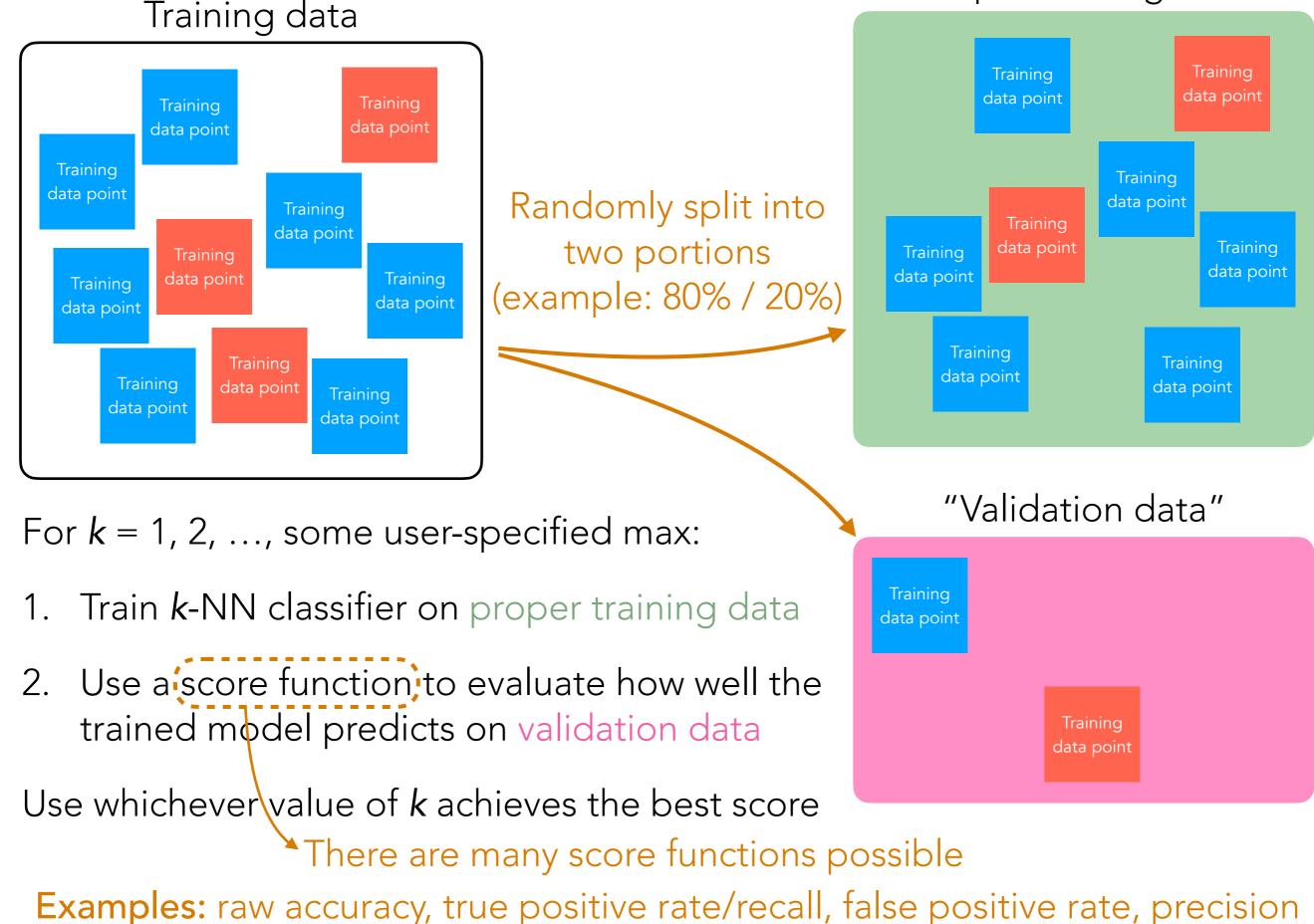
we know whether it is spam/ham

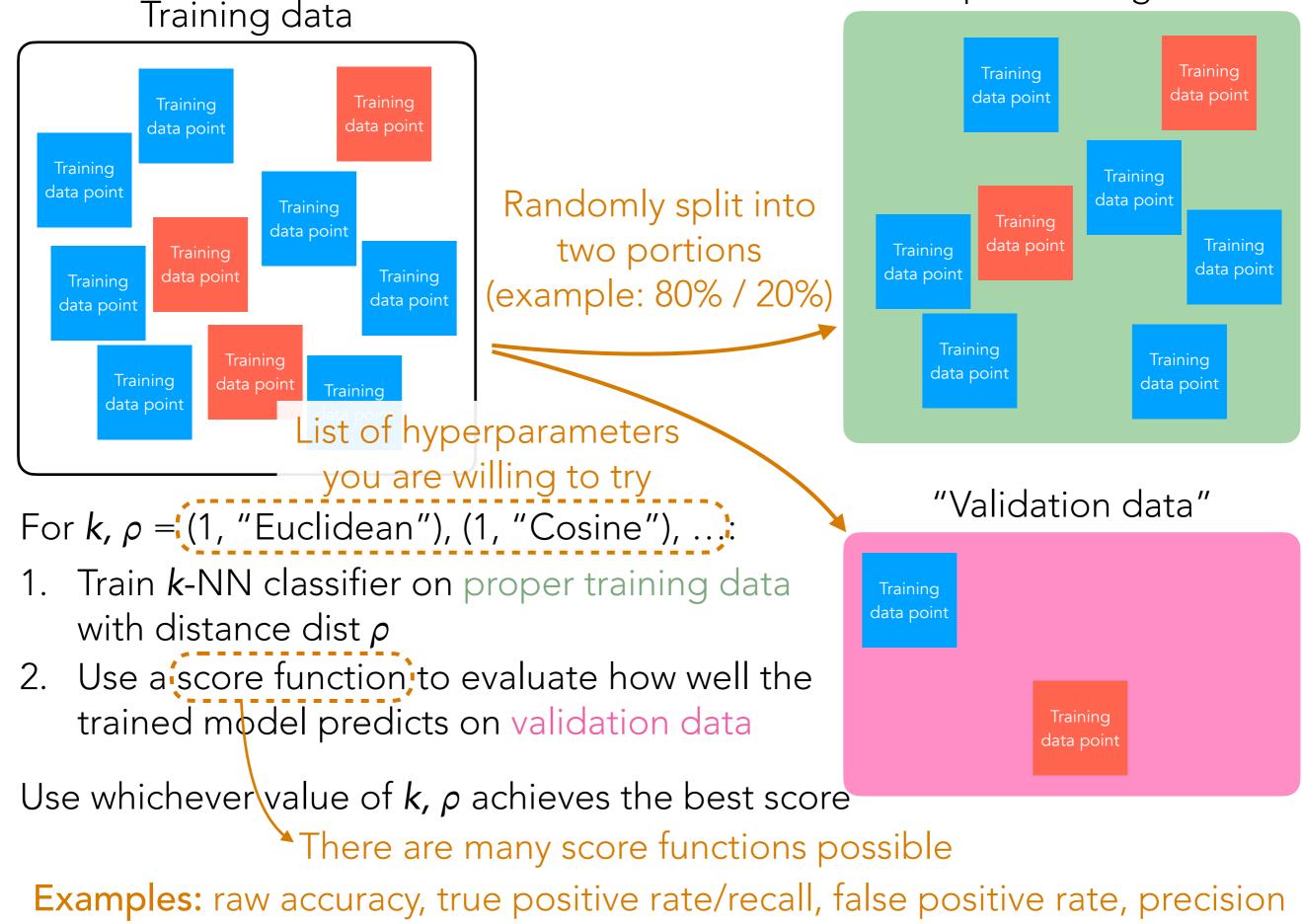
spam/ham

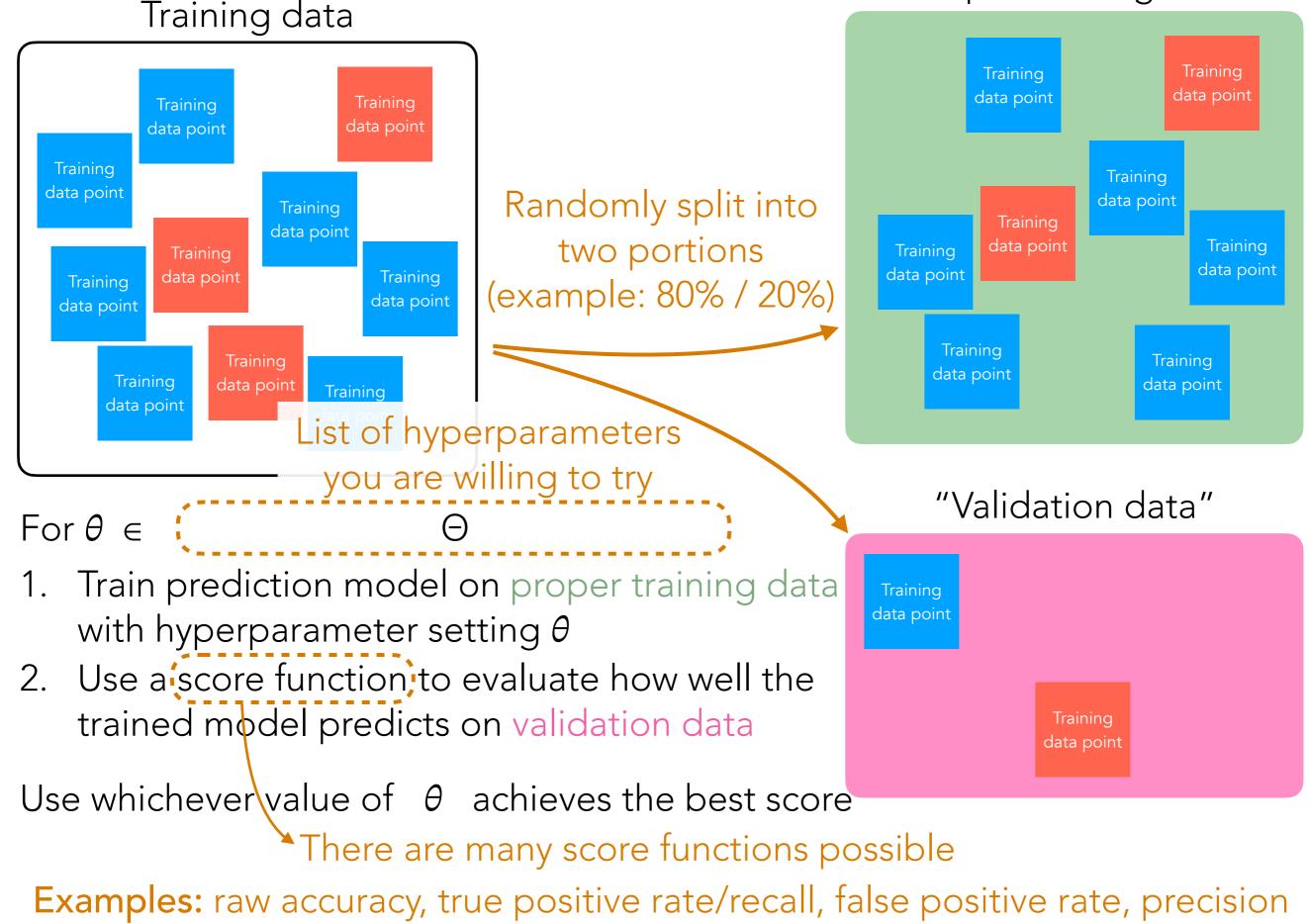


Terminology Remarks

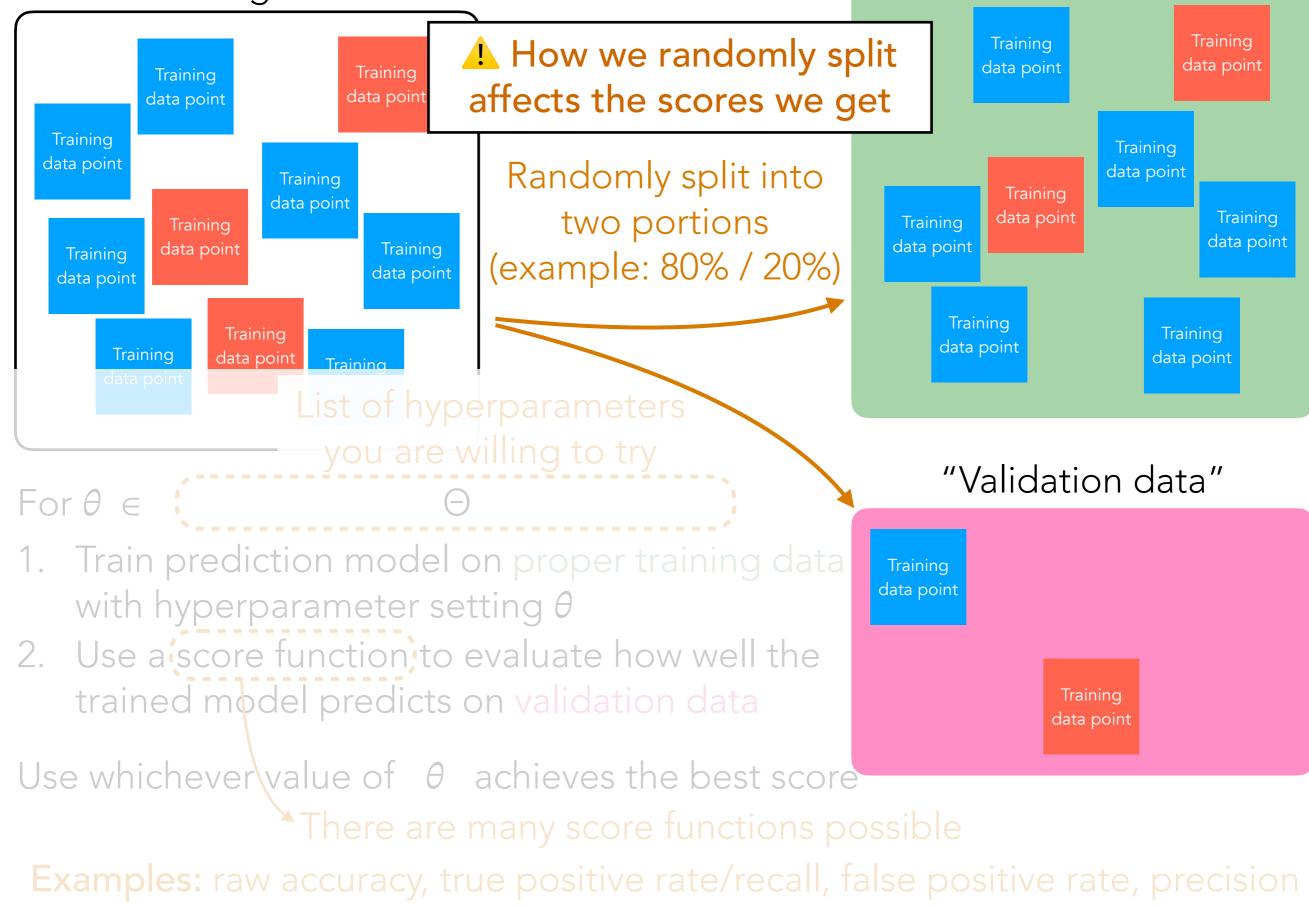
- What we're using is commonly called a **train/validation split**
 - If you also consider that there's a test set that's <u>not</u> part of train/validation data: division is called train/validation/test split
- Warning: in the machine learning community, what I'm calling the "proper training data"/"proper training set" is commonly also called the "training data"/"training set" even though it is typically a *subset* of the full training data (that we split into proper training/validation sets)
 - Put another way: what precisely the "training data" refers to can be ambiguous as it could mean the <u>full training data</u> or the <u>full training data minus the validation data</u>
 - In 94-775, to avoid confusion, we use the somewhat non-standard terminology "proper training set"/"proper training data" to refer to the the <u>full training data minus the validation data</u>

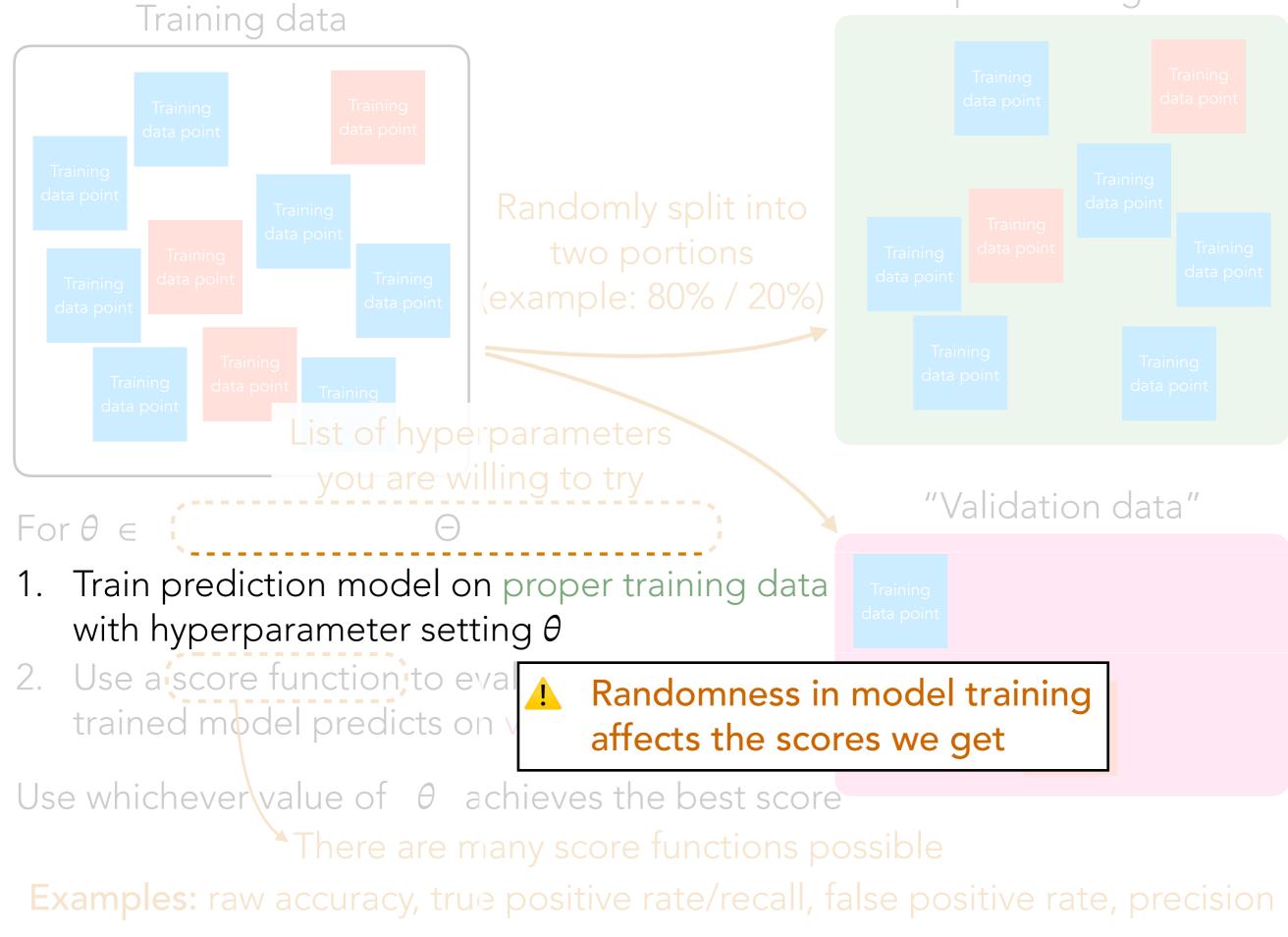


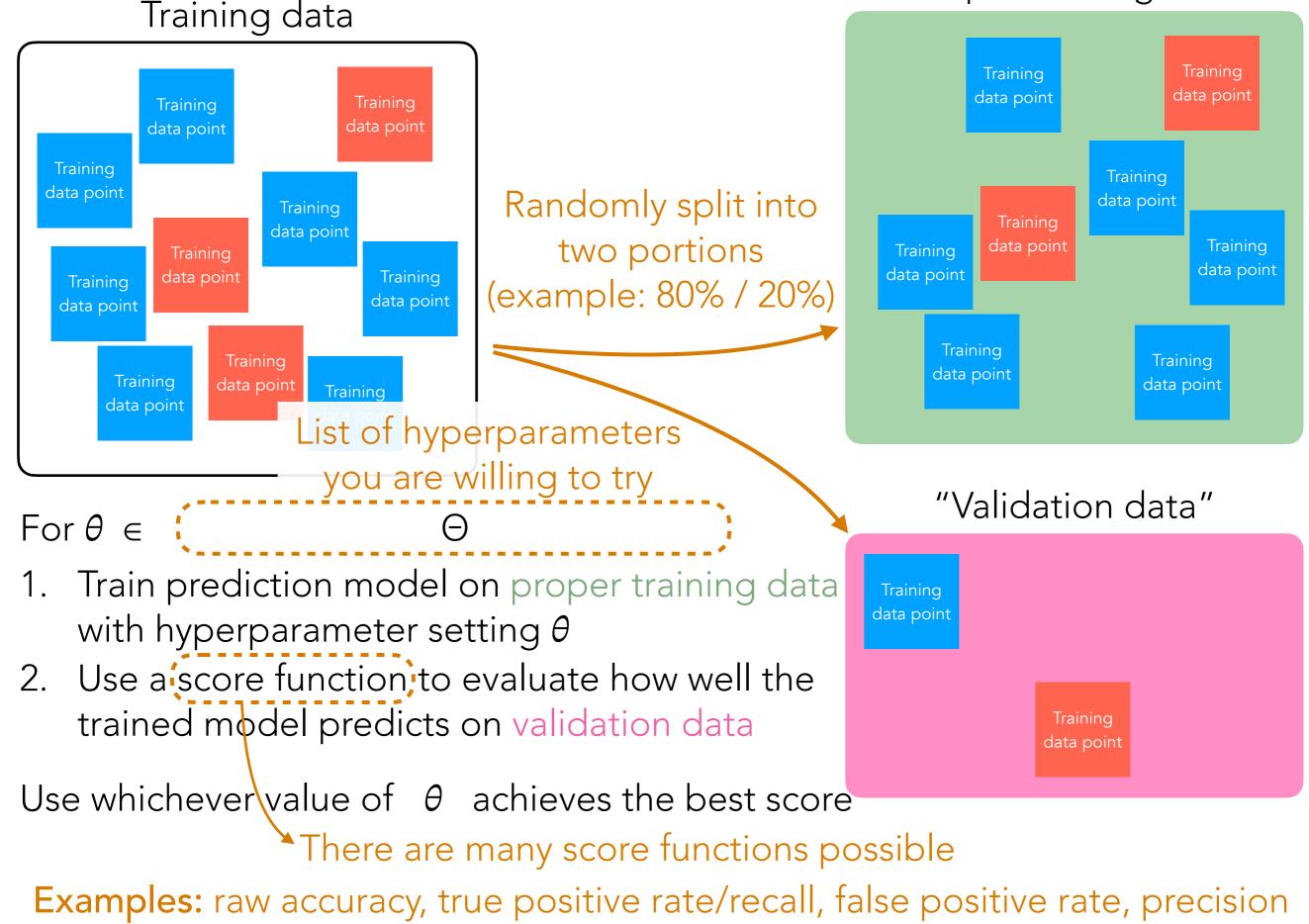




Training data







The rest of the prediction models we consider will be based on *neural nets* (which commonly have hyperparameters!)

Neural net models can be tuned in the same manner we just saw for k-NN classification

Important: you may have seen cross-validation before

- If you don't know what this is, don't worry about it
- Cross-validation is commonly too expensive for neural net training so we stick to the train/val split strategy

Neural Nets & Deep Learning

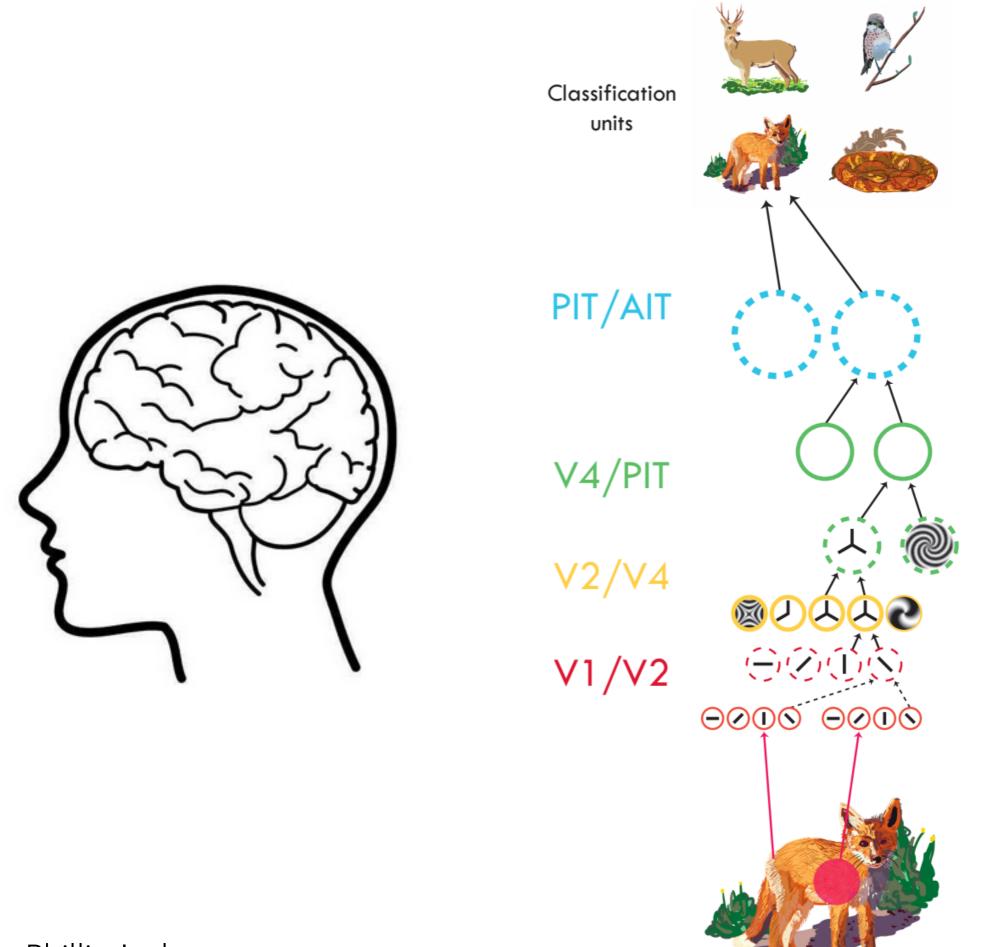
Extremely useful in practice:

- Human-level image classification
- Human-level speech recognition
- Human-level in machine translation, text-to-speech
- Self-driving cars
- Better than humans at playing Go and many other games
- Capable of generating fake images, video, and audio that look real
- Human-level chatbots (ChatGPT, GPT4.0, Gemini, Claude, ...)

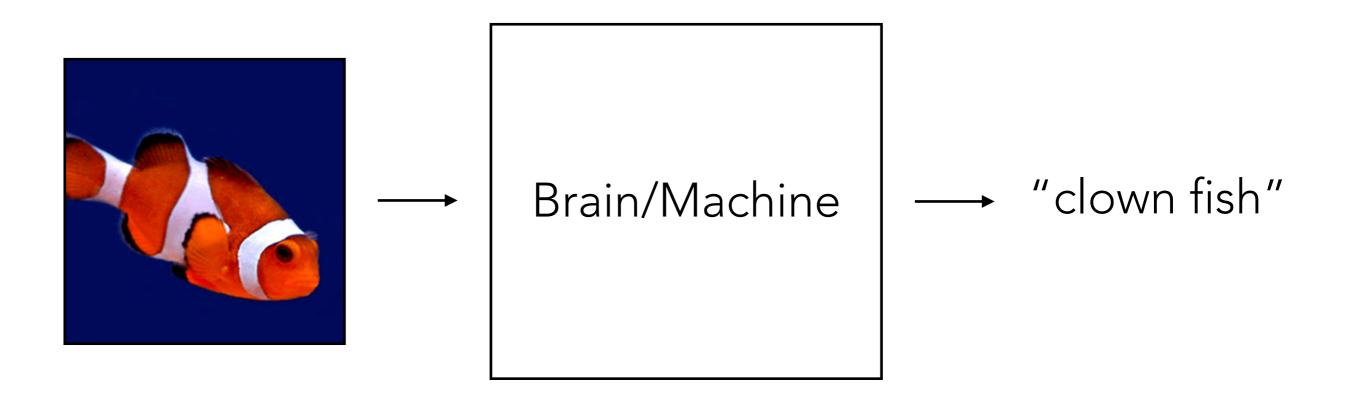
A We don't fully understand when many of these technologies fail or how best to prevent their misuse

All of this technology will get better over time

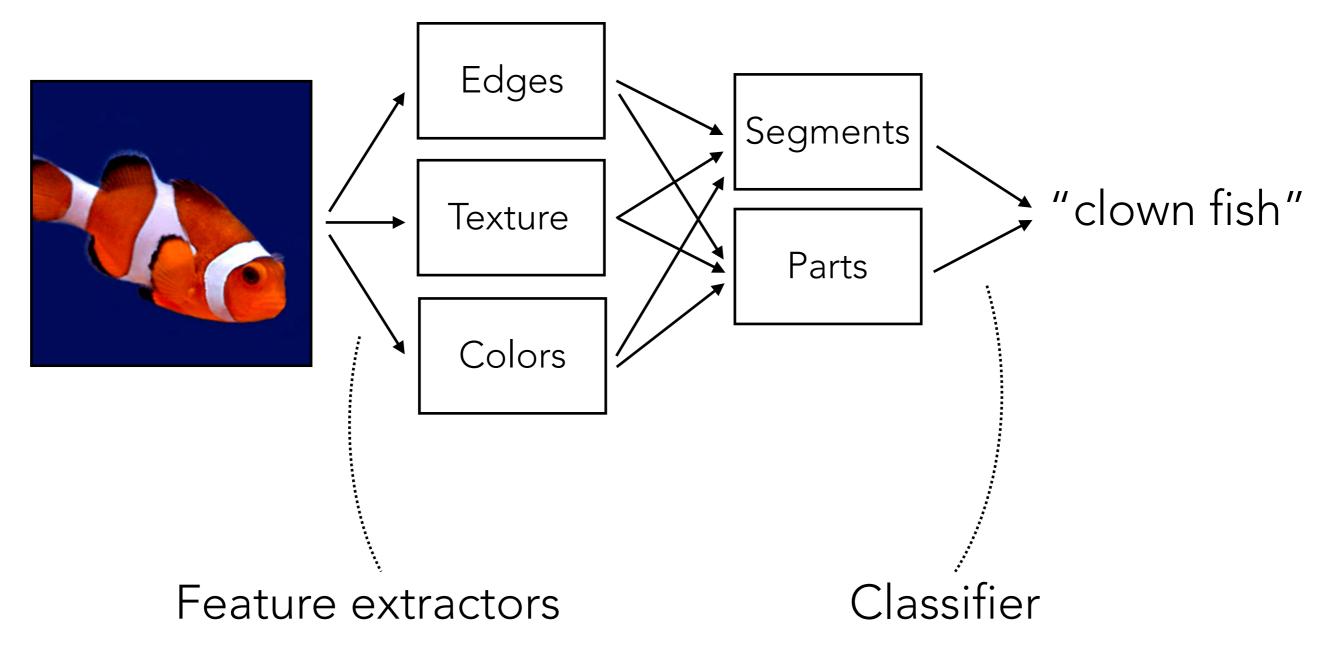
What are neural nets & what does "deep learning" refer to?

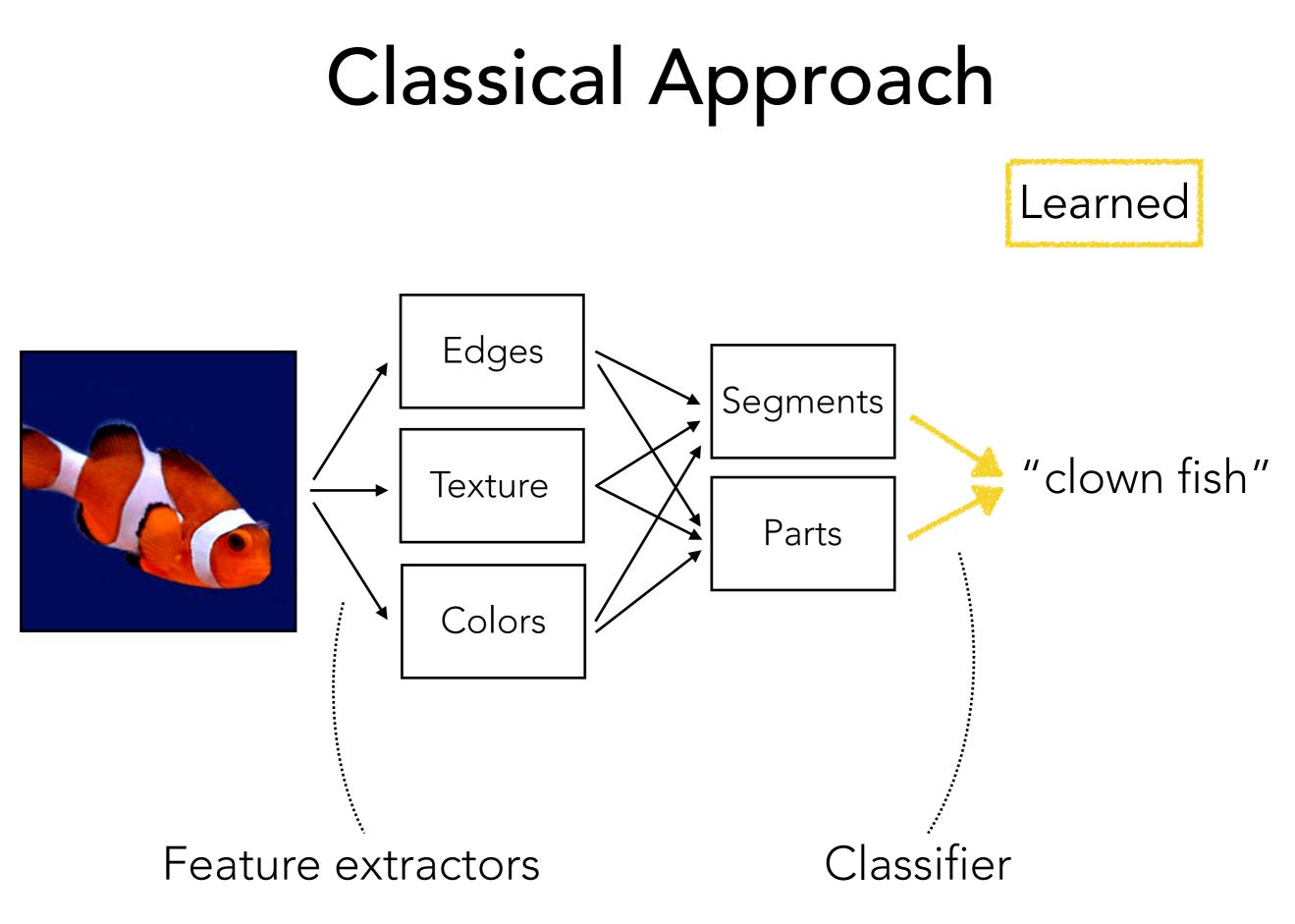


Basic Idea

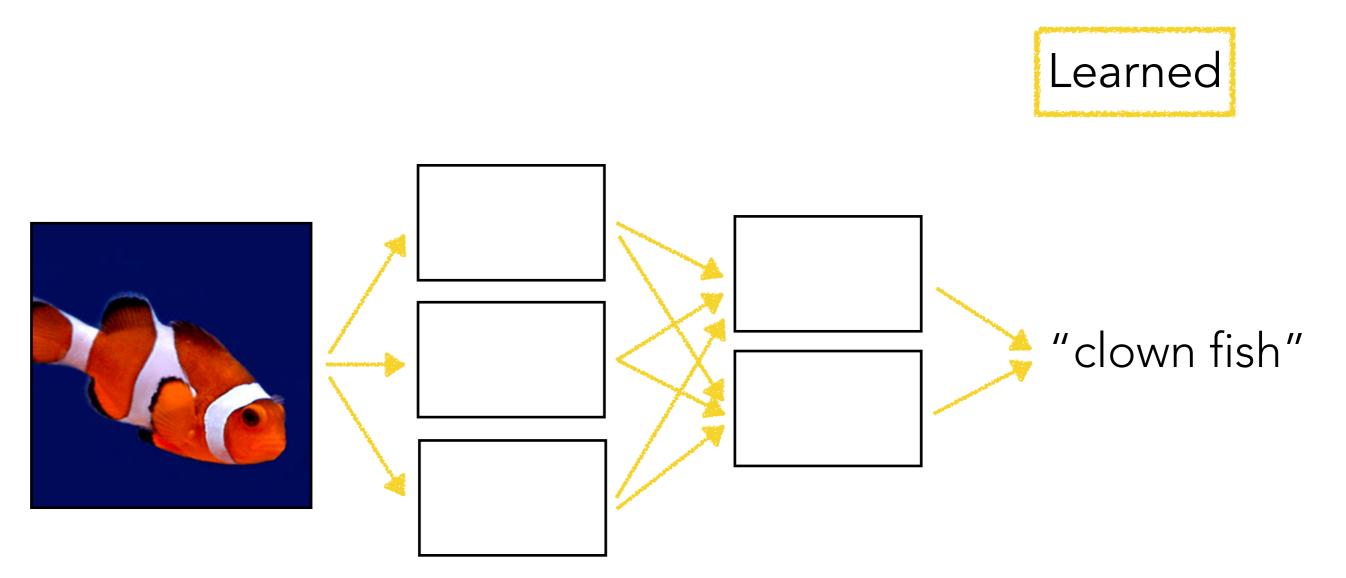


Classical Approach

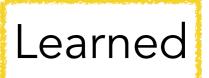


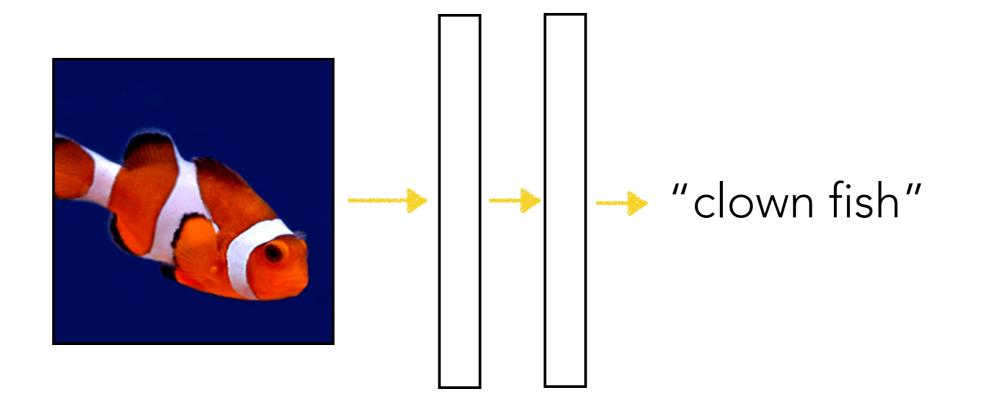


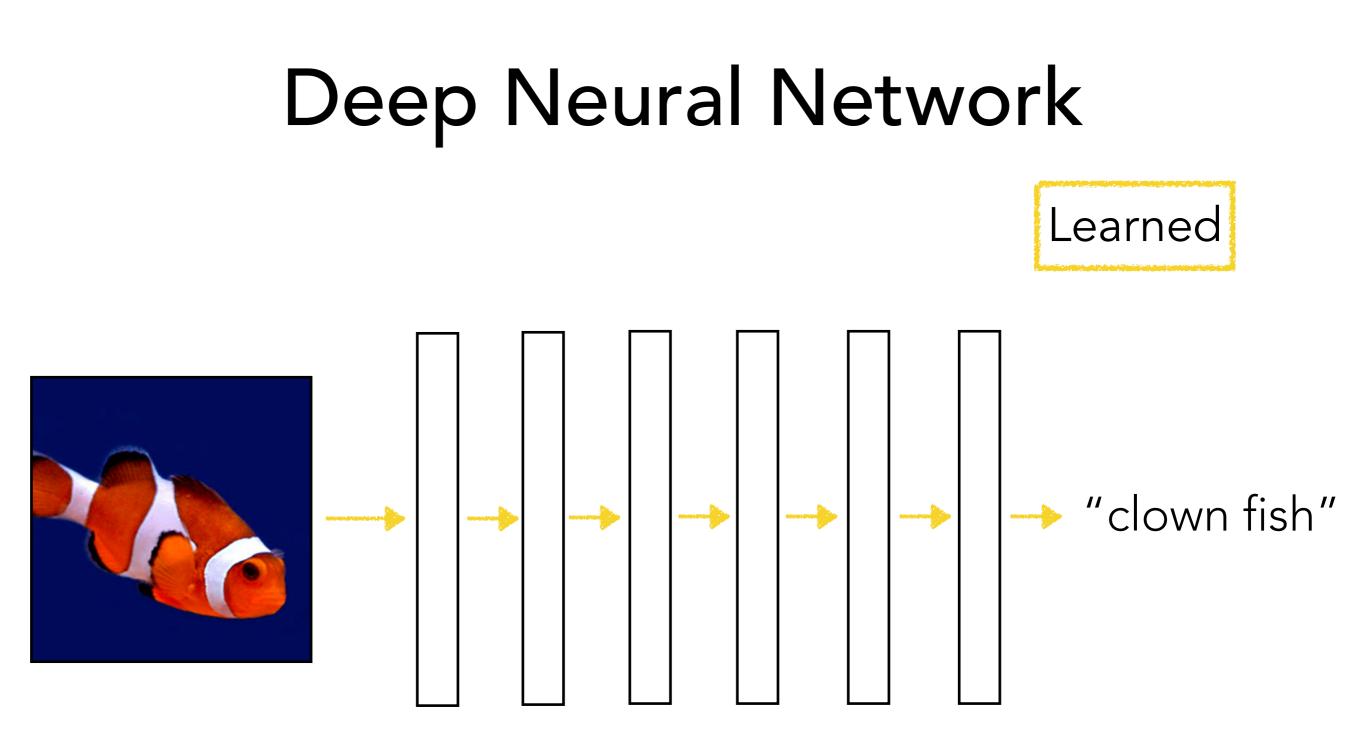
Neural Network



Neural Network







Deep learning just refers to learning deep neural nets

Crumpled Paper Analogy

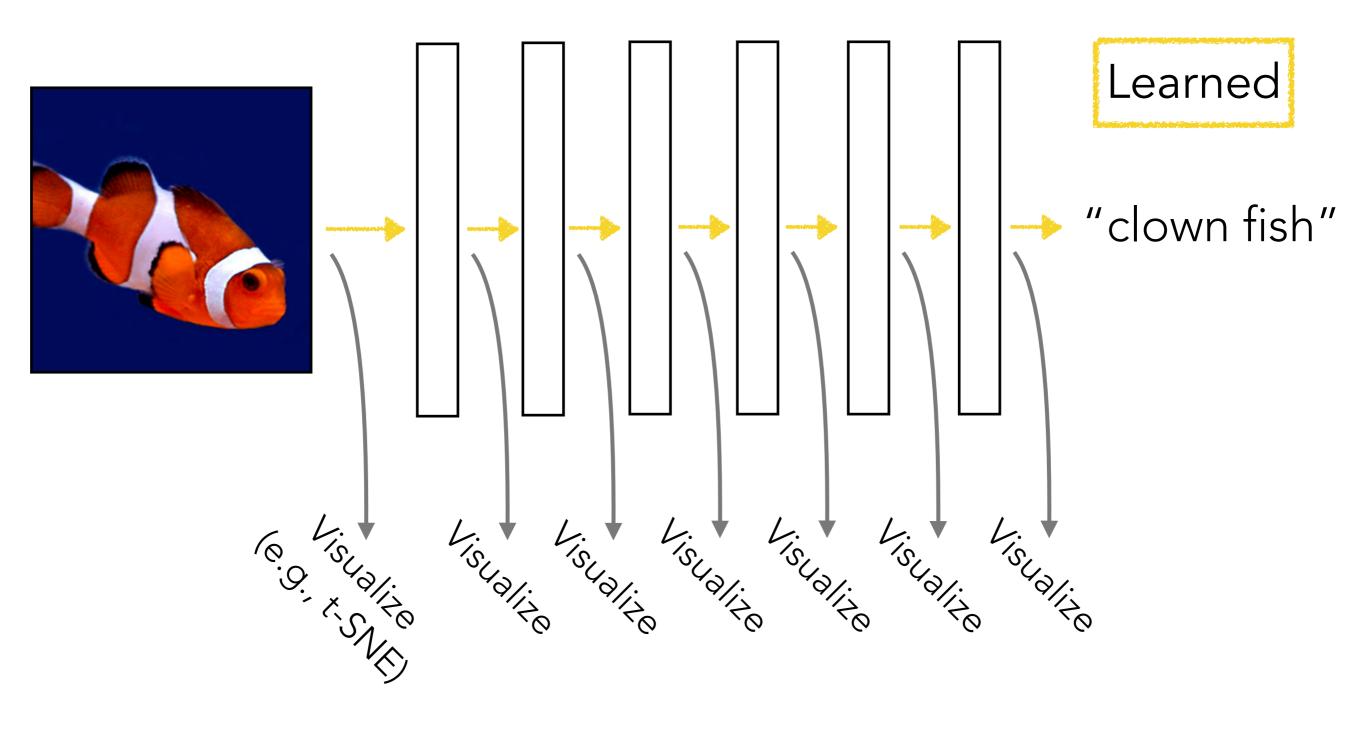
binary classification: 2 crumpled sheets of paper corresponding to the different classes

deep learning: series ("layers") of simple unfolding operations to try to disentangle the 2 sheets

Analogy: Francois Chollet, photo: George Chen

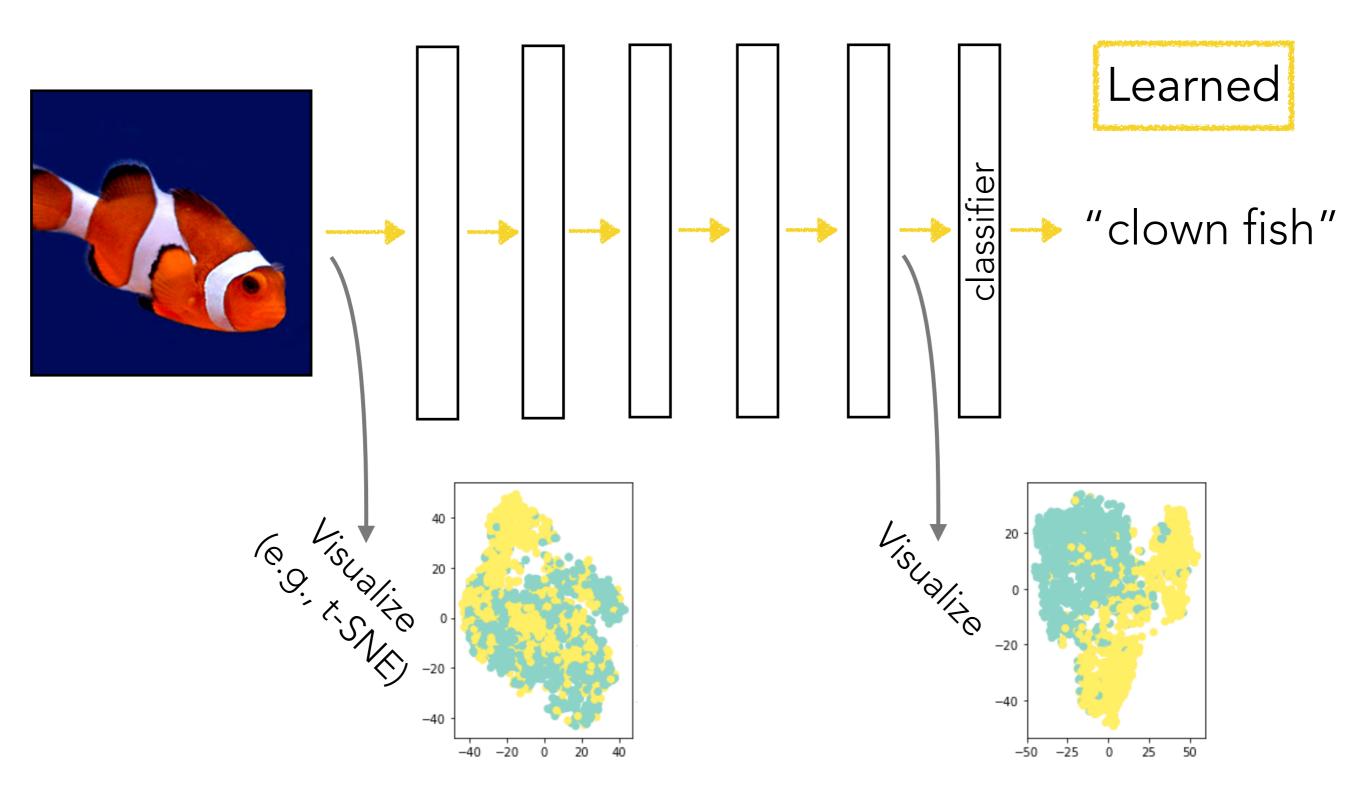
Representation Learning

Each layer's output is another way we could represent the input data



Representation Learning

Each layer's output is another way we could represent the input data



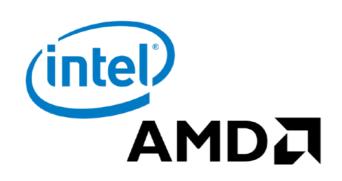
Why Does Deep Learning Work?

Actually the ideas behind deep learning are old (~1980's)

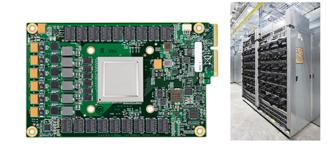
There's even a patent from 1961 that basically

Big data amounts to a convolutional neural net for OCR

• Better hardware



CPU's & Moore's law



GPU's

TPU's

Better algorithms

Many companies now make dedicated hardware for deep nets (e.g., Google, Apple, Tesla)

Structure Present in Data Matters

Neural nets aren't doing black magic

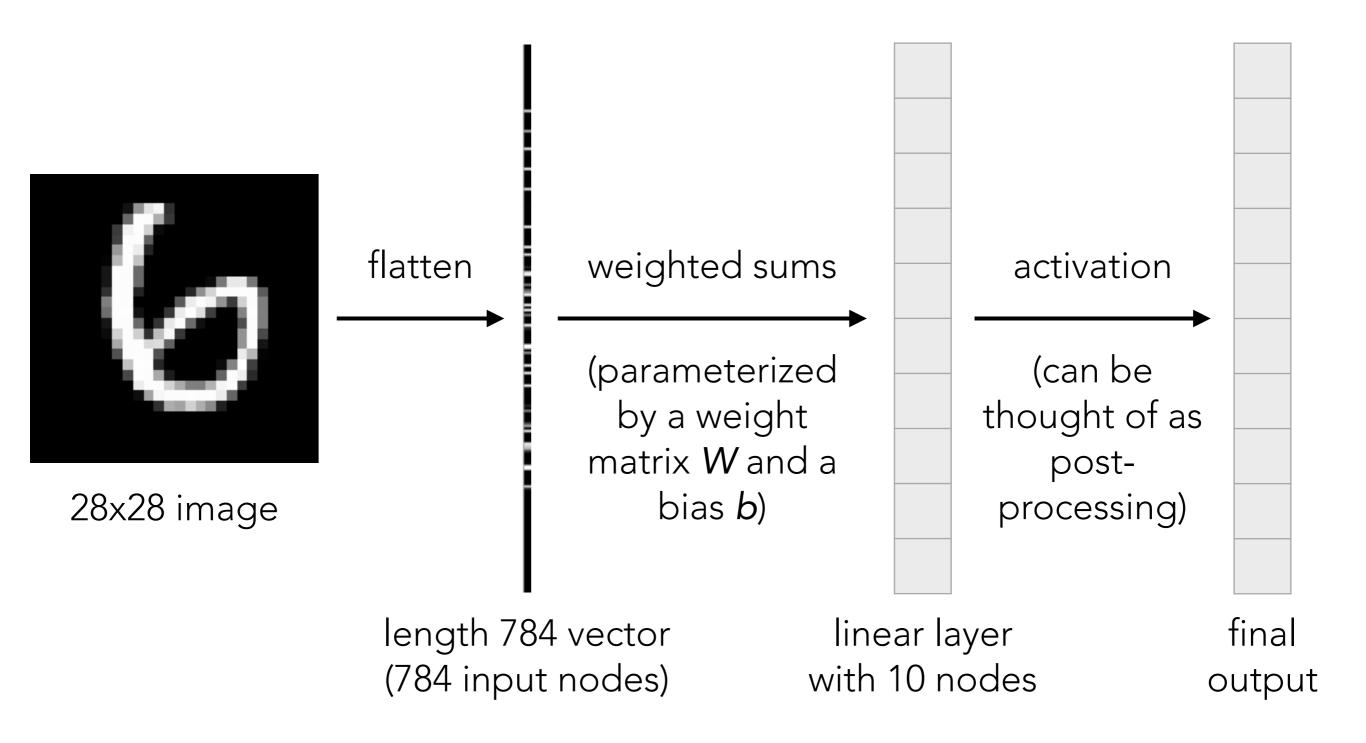
• Image analysis: convolutional neural networks (convnets) neatly incorporates basic image processing structure

- Time series analysis: transformers <u>learn how to weight previous</u> time steps' contributions to a prediction at the current time step
 - Note: text is a time series of tokens
 - Note: video is a time series of images

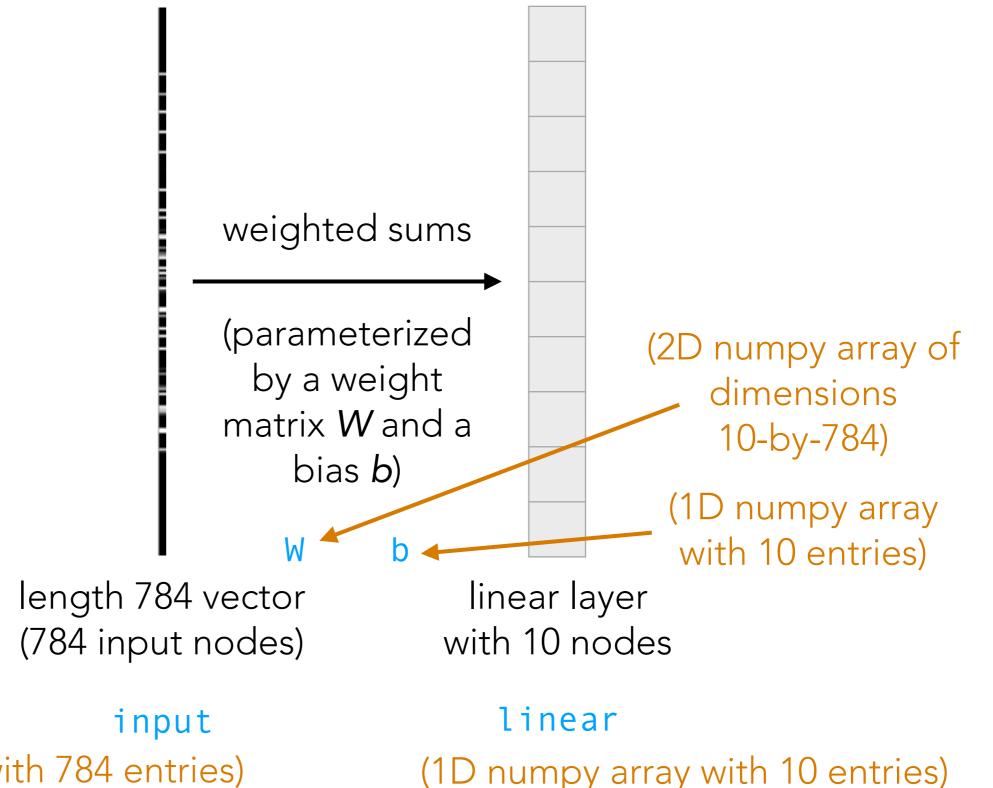
Handwritten Digit Recognition Example

Walkthrough of 2 extremely simple neural nets

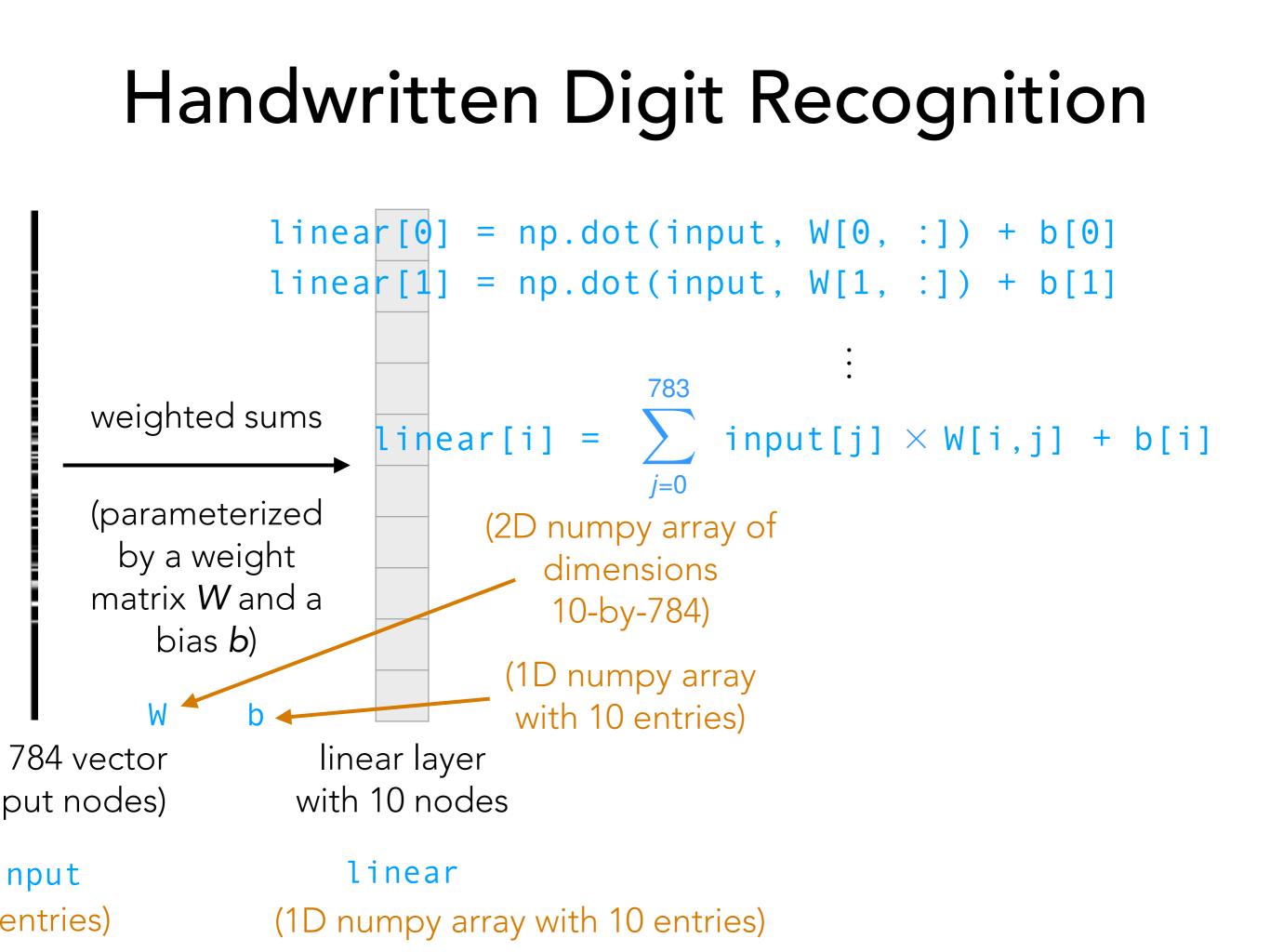
Handwritten Digit Recognition



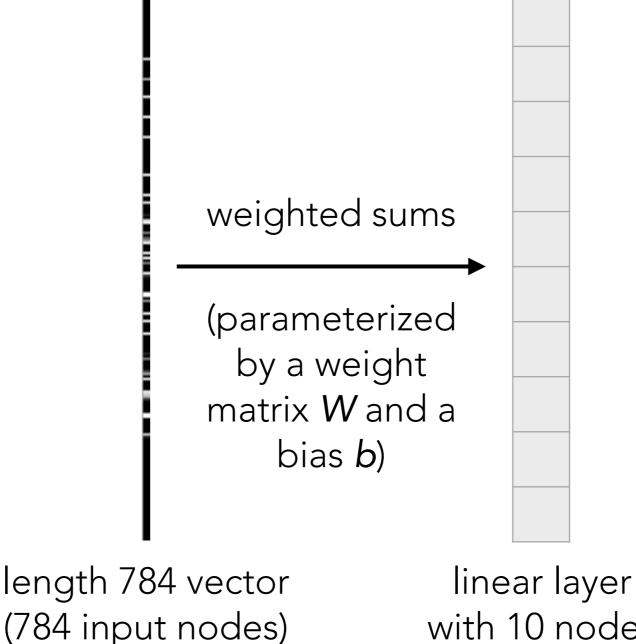
Handwritten Digit Recognition



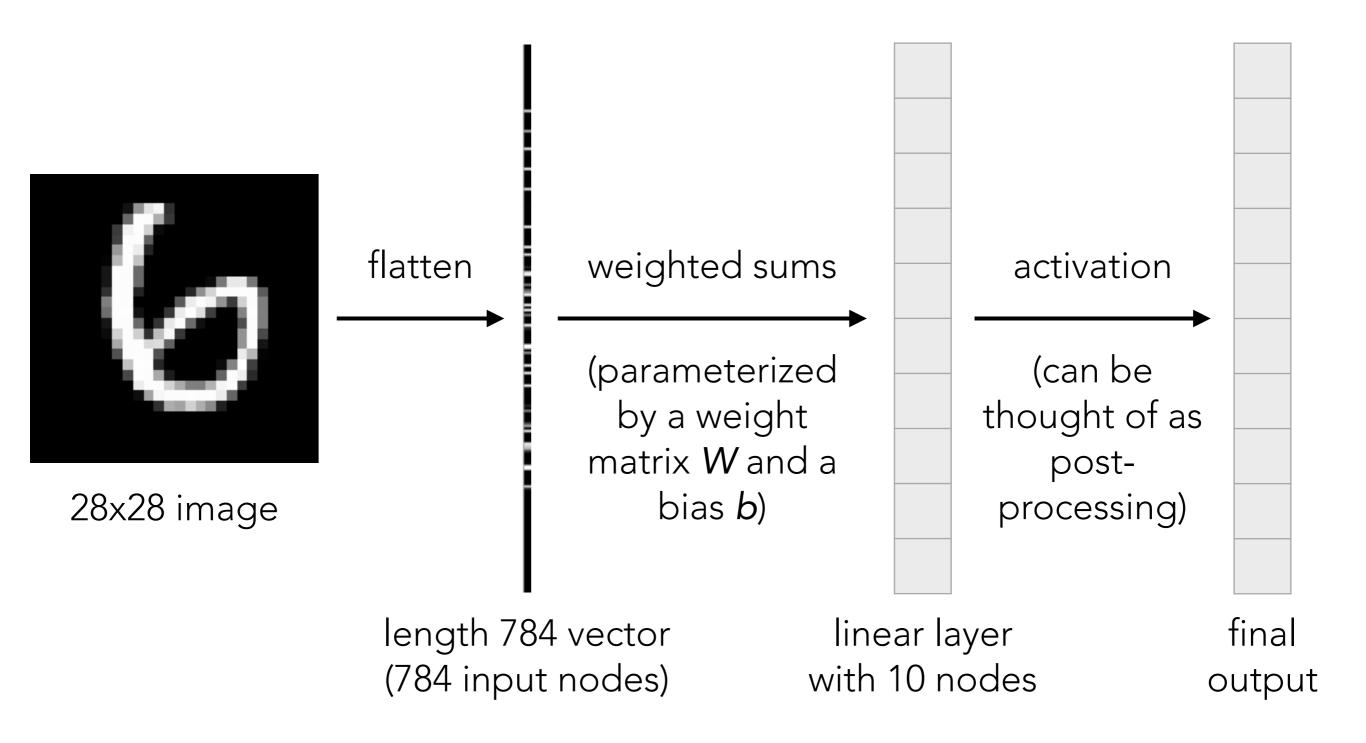
(1D numpy array with 784 entries)



Handwritten Digit Recognition



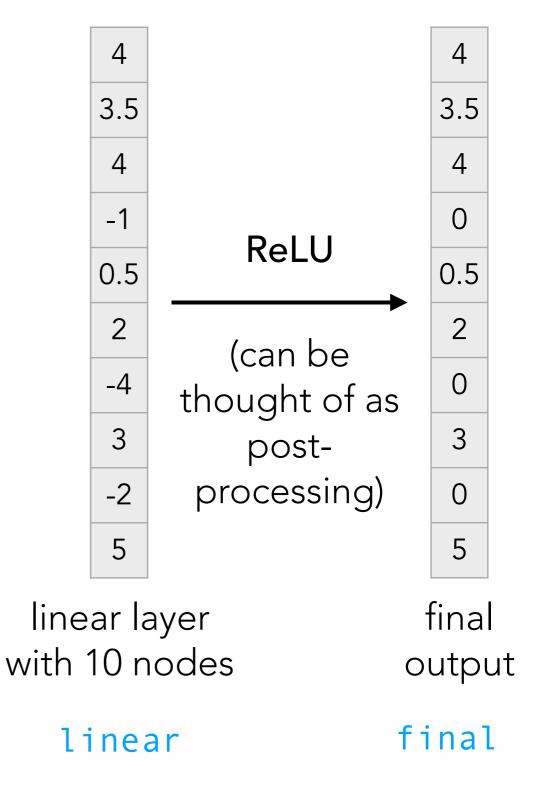
with 10 nodes



Many different activation functions possible

Example: **Rectified linear unit (ReLU)** zeros out entries that are negative

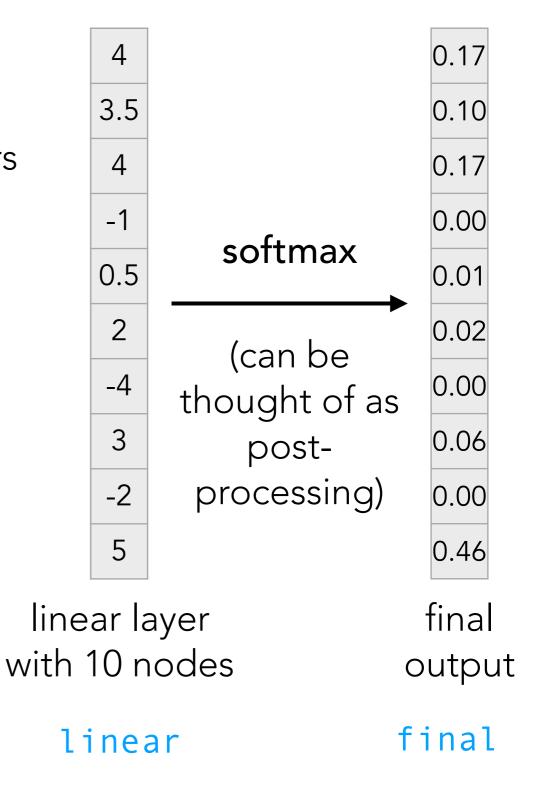
final = np.maximum(0, linear)



Many different activation functions possible

Example: **softmax** converts a table of numbers into a probability distribution

```
exp = np.exp(linear)
final = exp / exp.sum()
```

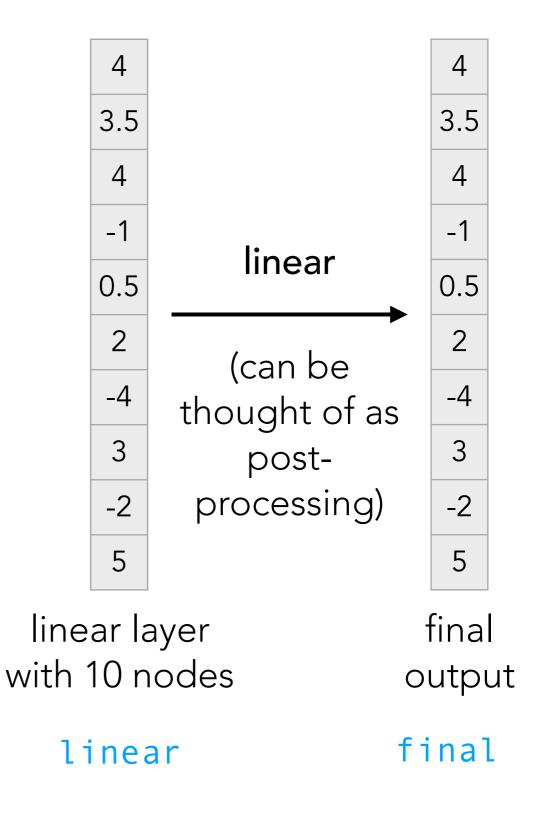


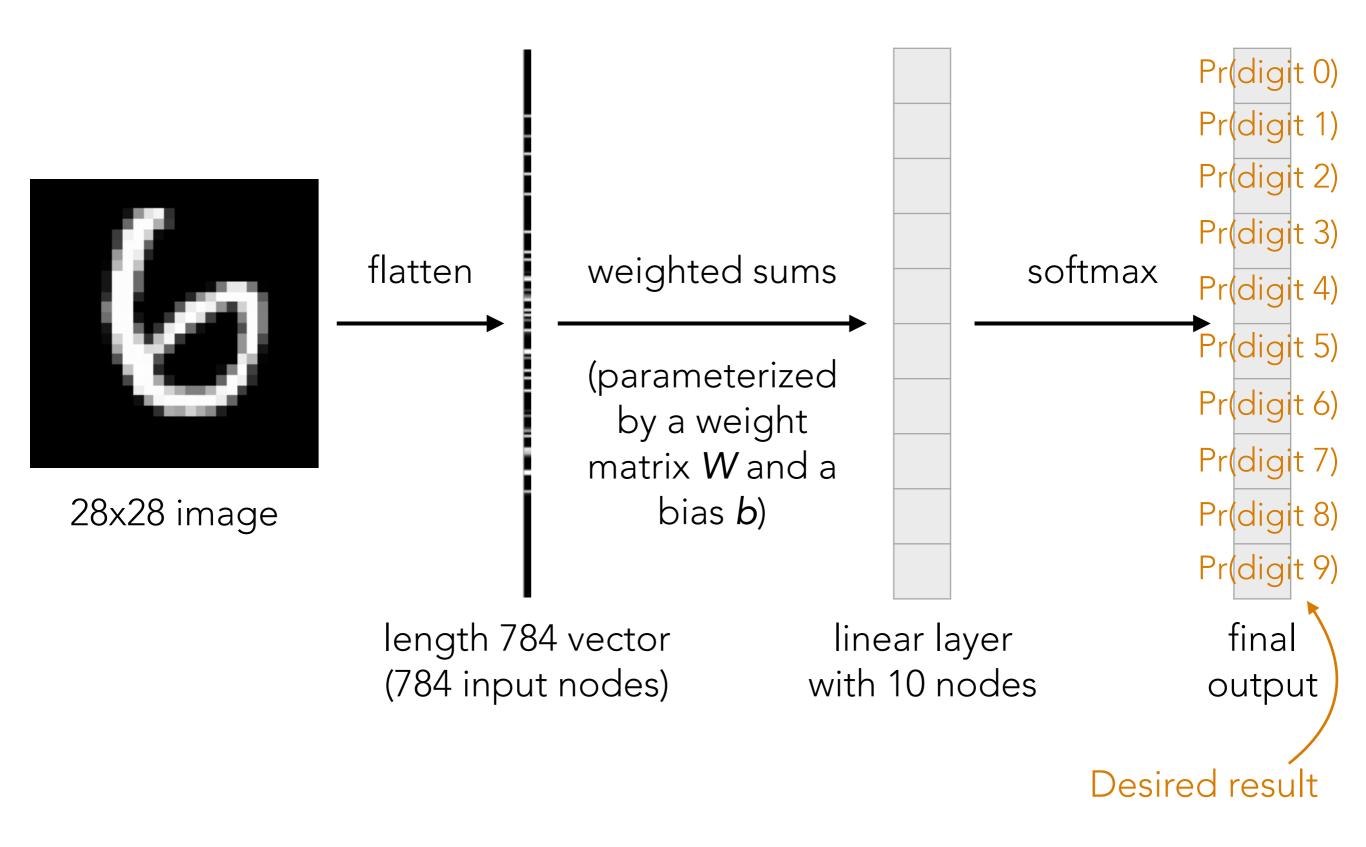
Many different activation functions possible

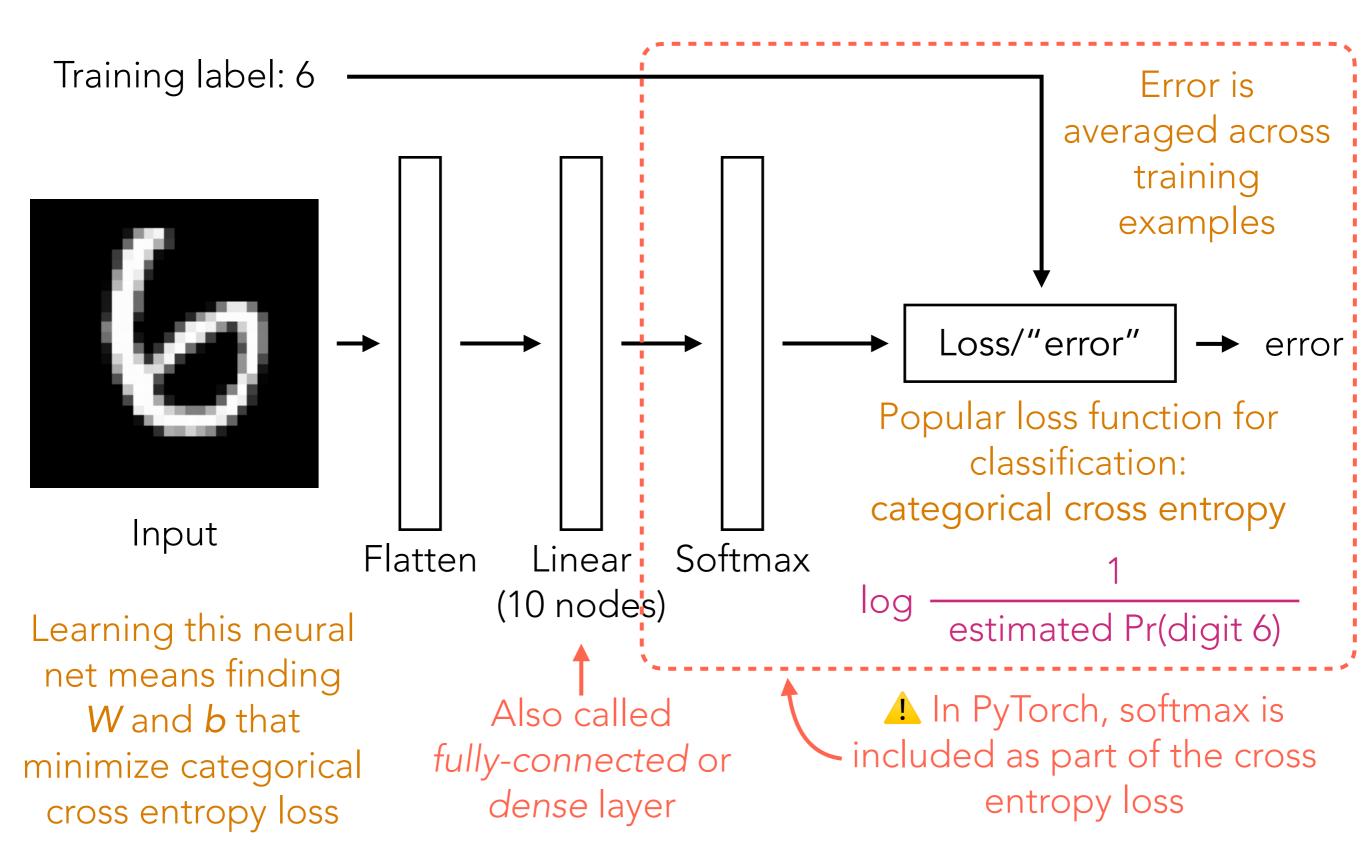
Example: linear activation does nothing

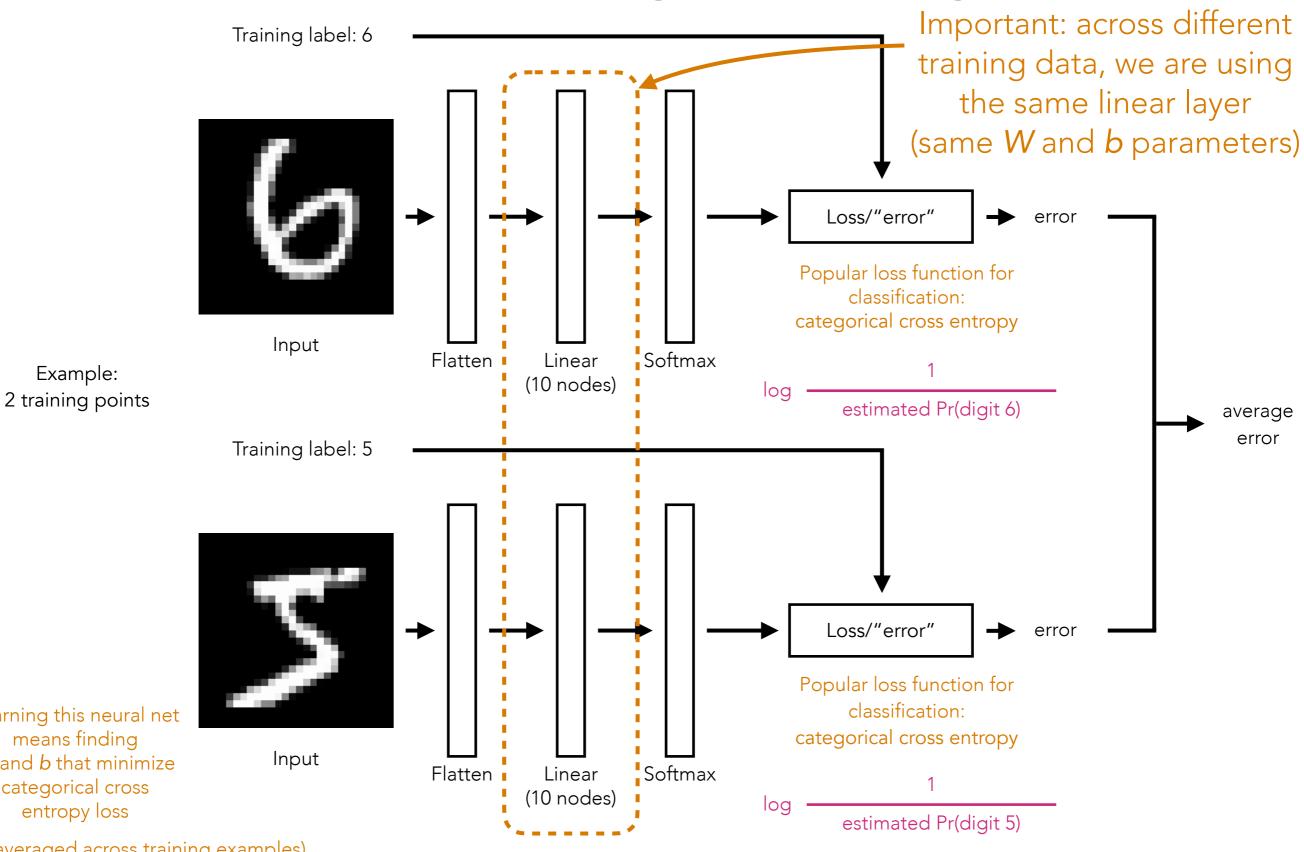
This is equivalent to there being no activation function

final = linear





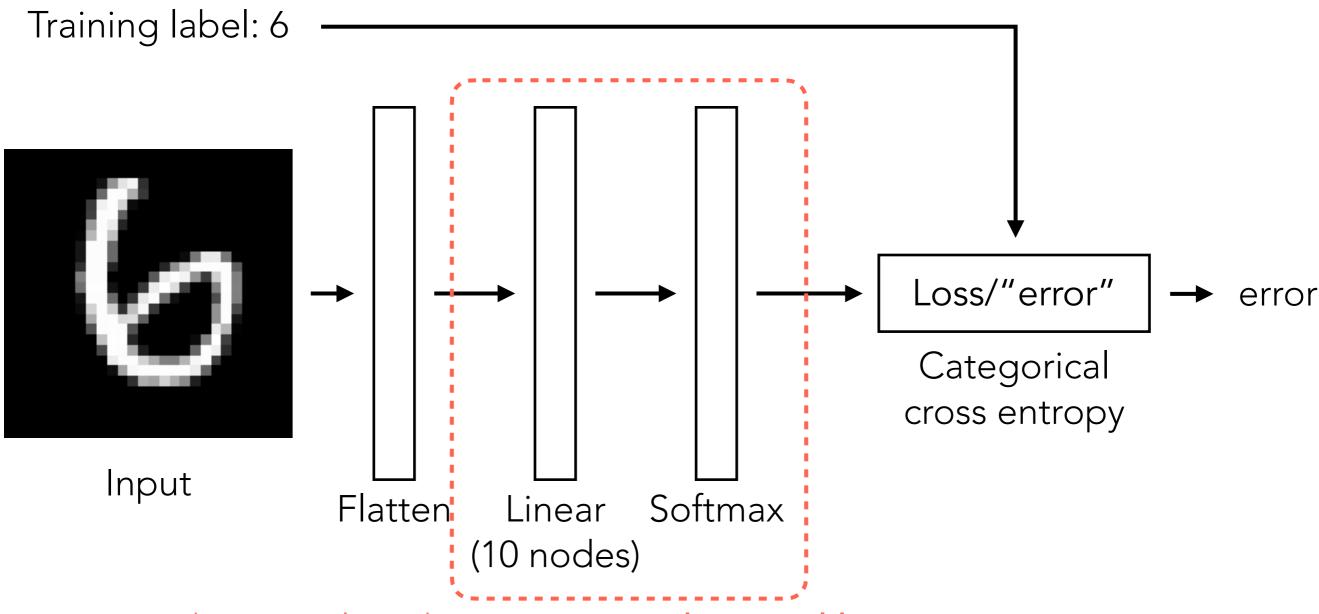




Learning this neural net means finding W and b that minimize categorical cross entropy loss

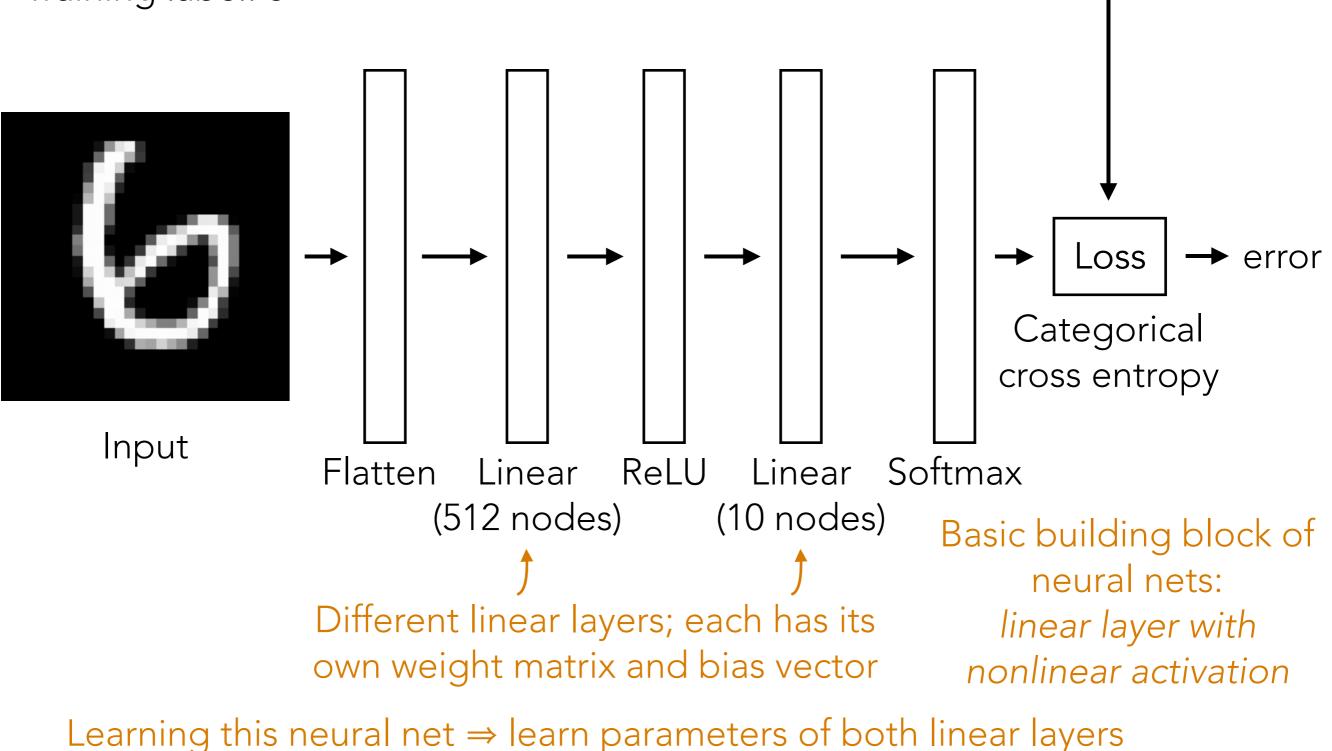
Example:

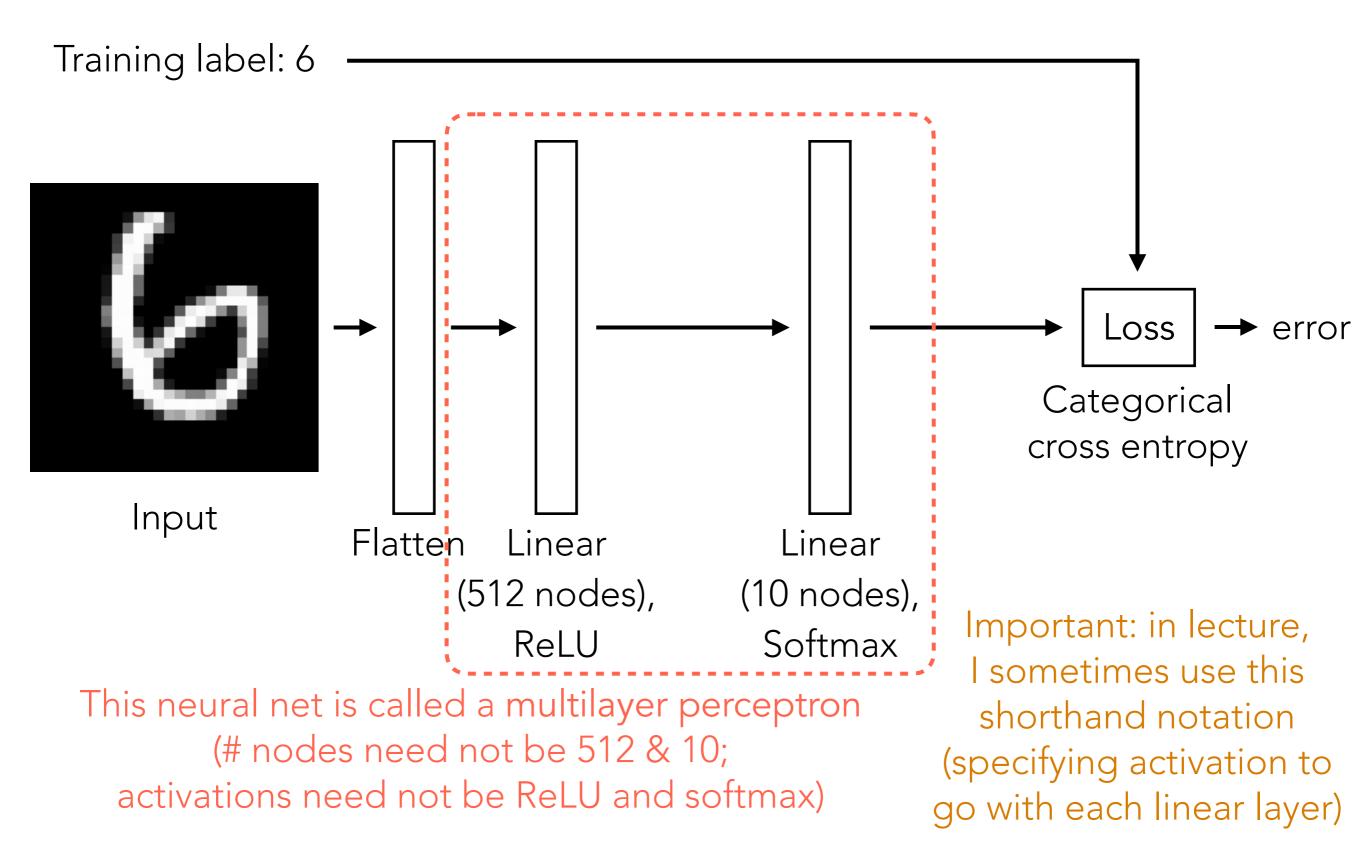
(averaged across training examples)



This neural net has a name: **multinomial logistic regression** (when there are only 2 classes, it's called **logistic regression**)

Training label: 6





PyTorch

- Designed to be like NumPy
 - A lot of (but not all) function names are the same as numpy (e.g., instead of calling np.sum, you would call torch.sum, etc)
 - PyTorch does not use NumPy arrays and instead uses tensors (so instead of np.array, you use torch.tensor)
- What's the big difference then? Why not just use NumPy?
 - PyTorch tensors keep track of what device they reside on
 - I For example, trying to add a tensor stored on the CPU and a tensor stored on a GPU will result in an error!
 - PyTorch tensors can automatically store "gradient" information (important for learning model parameters; details in later lecture)

PyTorch code is often harder to debug than NumPy code

There's a PyTorch tutorial posted in supplemental reading

Demo