
94-775 Unstructured Data Analytics

Nearly all slides by George H. Chen
with a few by Phillip Isola

Lecture 11: Hyperparameter tuning; intro to
neural nets & deep learning

Quiz 2

Solutions are in Canvas -> Files -> “Quiz 2 solutions.pdf”

Regrade requests (use Gradescope’s regrade request feature)
are due Friday April 18, 11:59pm

(for if you think there’s a genuine grading error)

As I intended, Quiz 2 was easier than Quiz 1

Remember: letter grades are assigned based on a curve

Reminder: if you get instructor-endorsed
posts in Piazza, you could earn up to 20

bonus points on your Quiz 2!

We plan on shutting down the Piazza forum on
Monday April 28, 11:59pm

Please get your instructor endorsements by then!

(Flashback) Example: k-NN Classification

What should the label of
this new point be?

3-NN classifier prediction

We just saw: k = 1, k = 2, k = 3

What happens if k = n?

How do we choose k?

What I’ll describe next can be used to select
hyperparameter(s) for any prediction method

Fundamental question:
How do we assess how good a prediction method is?

(Flashback)

(Flashback) Hyperparameters vs. Parameters

• We fit a model’s parameters to training data
(terminology: we “learn” the parameters)

• We pick values of hyperparameters and they do not automatically
get fit to training data

• Example: Gaussian mixture model
• Hyperparameter: number of clusters k
• Parameters: cluster probabilities, means, covariance matrices

• Example: k-NN classification
• Hyperparameter: number of nearest neighbors k
• Parameters: N/A

Actually, there’s another hyperparameter: distance function to use
(for simplicity, we assume Euclidean distance for now)

⚠ Major assumption:
training and test data “look alike”

(technically: training and test data are i.i.d.
sampled from the same underlying distribution)

Prediction is harder when training and test data appear quite different!

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point Training

data point

Training
data point

Test data
point

Test data
point

Test data
point

Test data
point

Test data
point

Want to classify
these points

correctly

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point Training

data point

Training
data point

Training data

Example: future
emails to classify as

spam/ham
Example: Each data point is an email and

we know whether it is spam/ham

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point Training

data point

Training
data point

Training data
“Proper training data”

“Validation data”

1. Train k-NN classifier on proper training data

2. Use a score function to evaluate how well the
trained model predicts on validation data

Use whichever value of k achieves the best score

Randomly split into
two portions

(example: 80% / 20%)

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

For k = 1, 2, …, some user-specified max:

There are many score functions possible
Examples: raw accuracy, true positive rate/recall, false positive rate, precision

Terminology Remarks
• What we’re using is commonly called a train/validation split

• If you also consider that there’s a test set that’s not part of
train/validation data: division is called train/validation/test split

• Warning: in the machine learning community, what I’m calling the
“proper training data”/“proper training set” is commonly also called
the “training data”/“training set” even though it is typically a subset of
the full training data (that we split into proper training/validation sets)

• Put another way: what precisely the “training data” refers to can be
ambiguous as it could mean the full training data or the
full training data minus the validation data

• In 94-775, to avoid confusion, we use the somewhat non-standard
terminology “proper training set”/“proper training data” to refer to
the the full training data minus the validation data

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point Training

data point

Training
data point

Training data
“Proper training data”

“Validation data”

1. Train k-NN classifier on proper training data

2. Use a score function to evaluate how well the
trained model predicts on validation data

Use whichever value of k achieves the best score

Randomly split into
two portions

(example: 80% / 20%)

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

For k = 1, 2, …, some user-specified max:

There are many score functions possible
Examples: raw accuracy, true positive rate/recall, false positive rate, precision

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point Training

data point

Training
data point

Training data
“Proper training data”

“Validation data”

1. Train k-NN classifier on proper training data
with distance dist 𝜌

2. Use a score function to evaluate how well the
trained model predicts on validation data

Use whichever value of k, 𝜌 achieves the best score

For k, 𝜌 = (1, “Euclidean”), (1, “Cosine”), …:

There are many score functions possible

List of hyperparameters
you are willing to try

Randomly split into
two portions

(example: 80% / 20%)

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Examples: raw accuracy, true positive rate/recall, false positive rate, precision

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point Training

data point

Training
data point

Training data
“Proper training data”

“Validation data”

1. Train prediction model on proper training data
with hyperparameter setting 𝜃

2. Use a score function to evaluate how well the
trained model predicts on validation data

For 𝜃 ∈ Θ

There are many score functions possible

List of hyperparameters
you are willing to try

Randomly split into
two portions

(example: 80% / 20%)

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Examples: raw accuracy, true positive rate/recall, false positive rate, precision

Use whichever value of achieves the best score𝜃

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point Training

data point

Training
data point

Training data
“Proper training data”

“Validation data”

1. Train prediction model on proper training data
with hyperparameter setting 𝜃

2. Use a score function to evaluate how well the
trained model predicts on validation data

For 𝜃 ∈ Θ

There are many score functions possible

List of hyperparameters
you are willing to try

Examples: raw accuracy, true positive rate/recall, false positive rate, precision

Use whichever value of achieves the best score𝜃

Randomly split into
two portions

(example: 80% / 20%)

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

⚠ How we randomly split
affects the scores we get

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point Training

data point

Training
data point

Training data
“Proper training data”

“Validation data”

1. Train prediction model on proper training data
with hyperparameter setting 𝜃

2. Use a score function to evaluate how well the
trained model predicts on validation data

For 𝜃 ∈ Θ

There are many score functions possible

List of hyperparameters
you are willing to try

Examples: raw accuracy, true positive rate/recall, false positive rate, precision

Use whichever value of achieves the best score𝜃

Randomly split into
two portions

(example: 80% / 20%)

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

⚠ Randomness in model training
affects the scores we get

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point Training

data point

Training
data point

Training data
“Proper training data”

“Validation data”

1. Train prediction model on proper training data
with hyperparameter setting 𝜃

2. Use a score function to evaluate how well the
trained model predicts on validation data

For 𝜃 ∈ Θ

There are many score functions possible

List of hyperparameters
you are willing to try

Randomly split into
two portions

(example: 80% / 20%)

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Examples: raw accuracy, true positive rate/recall, false positive rate, precision

Use whichever value of achieves the best score𝜃

The rest of the prediction models we
consider will be based on neural nets

(which commonly have hyperparameters!)
Neural net models can be tuned in the same manner

we just saw for k-NN classification

Important: you may have seen cross-validation before

• If you don’t know what this is, don’t worry about it

• Cross-validation is commonly too expensive for neural net
training so we stick to the train/val split strategy

Neural Nets & Deep Learning
Extremely useful in practice:

• Human-level image classification

• Human-level speech recognition

• Human-level in machine translation, text-to-speech

• Self-driving cars

• Better than humans at playing Go and many other games

• Capable of generating fake images, video, and audio that look real

• Human-level chatbots (ChatGPT, GPT4.0, Gemini, Claude, …)

⚠ We don’t fully understand when many of these technologies fail
or how best to prevent their misuse

⚠ All of this technology will get better over time

What are neural nets & what does
“deep learning” refer to?

Serre, 2014Slide by Phillip Isola

Brain/Machine “clown fish”

Basic Idea

Slide by Phillip Isola

Edges

Texture

Colors

Segments

Parts
“clown fish”

Feature extractors Classifier

Classical Approach

Slide by Phillip Isola

“clown fish”

Edges

Texture

Colors

Segments

Parts

Learned

Classical Approach

Slide by Phillip Isola

Feature extractors Classifier

“clown fish”

Learned

Neural Network

Slide by Phillip Isola

“clown fish”

Learned

Neural Network

Slide by Phillip Isola

“clown fish”

Learned

Deep Neural Network

Slide by Phillip Isola

Deep learning just refers to learning deep neural nets

Crumpled Paper Analogy

Analogy: Francois Chollet, photo: George Chen

binary classification: 2 crumpled sheets of
paper corresponding to the different classes

deep learning: series (“layers”) of simple
unfolding operations to try to disentangle

the 2 sheets

Representation Learning

“clown fish”

Learned

Visualize

(e.g., t-SNE)

Visualize

Visualize

Visualize

Visualize

Visualize

Visualize

Each layer’s output is another way we could represent the input data

Representation Learning

“clown fish”

Learned

Visualize

(e.g., t-SNE)

Visualize

Each layer’s output is another way we could represent the input data

cl
as

si
fie

r

Why Does Deep Learning Work?
Actually the ideas behind deep learning are old (~1980’s)

• Big data

• Better hardware

GPU’s TPU’s
CPU’s

& Moore’s law

• Better algorithms

There’s even a patent from 1961 that basically
amounts to a convolutional neural net for OCR

Many companies now make dedicated hardware for
deep nets (e.g., Google, Apple, Tesla)

Structure Present in Data Matters

Neural nets aren’t doing black magic

• Image analysis: convolutional neural networks (convnets) neatly
incorporates basic image processing structure

• Time series analysis: transformers learn how to weight previous
time steps’ contributions to a prediction at the current time step

• Note: text is a time series of tokens

• Note: video is a time series of images

Handwritten Digit
Recognition Example

Walkthrough of 2 extremely simple neural nets

Handwritten Digit Recognition

length 784 vector
(784 input nodes)

28x28 image

flatten

linear layer
with 10 nodes

final
output

weighted sums activation

(can be
thought of as

post-
processing)

(parameterized
by a weight

matrix W and a
bias b)

Handwritten Digit Recognition

length 784 vector
(784 input nodes)

weighted sums

(parameterized
by a weight

matrix W and a
bias b)

input linear

W b

(1D numpy array with 784 entries) (1D numpy array with 10 entries)

(2D numpy array of
dimensions
10-by-784)

(1D numpy array
with 10 entries)

linear layer
with 10 nodes

length 784 vector
(784 input nodes)

weighted sums

(parameterized
by a weight

matrix W and a
bias b)

input linear

W b

(1D numpy array with 784 entries) (1D numpy array with 10 entries)

(2D numpy array of
dimensions
10-by-784)

(1D numpy array
with 10 entries)

linear layer
with 10 nodes

Handwritten Digit Recognition

…

linear[0] = np.dot(input, W[0, :]) + b[0]
linear[1] = np.dot(input, W[1, :]) + b[1]

linear[i] = input[j] W[i,j]� + b[i]

<latexit sha1_base64="Lgf3EoMWbxF0jLBUMCJvIQ7Zw5E=">AAAEAHicjVPLbtNAFJ3GPIp5pbBkY5FWYmU5oWrLolIKQmKDVETTVopNNB5fJ0PnYXnGIdHIG76DLYgdYsuXwN8wTlLFTUBwR5auzn2cc69n4oxRpYPg10bDuXb9xs3NW+7tO3fv3W9uPThVssgJ9IhkMj+PsQJGBfQ01QzOsxwwjxmcxRcvqvjZGHJFpTjR0wwijoeCppRgbaFBsxmqgg/M+8OgfGf2D56Wg2Yr8DtBZV7g782dth9cdVpoYceDrcbPMJGk4CA0YVipfjvIdGRwrilhULphoSDD5AIPoW9dgTmoyMykl96ORRIvlbn9hPZmaL3CYK7UlMc2k2M9UquxCvxTrF/o9CAyVGSFBkHmRGnBPC29ag9eQnMgmk2tg0lOrVaPjHCOibbbcl13x6t3UwQzSCIzAjYGXVbRHAR8IJJzLJIwxZyyaQIpLpg2oUoXbumtNDppR6aatNK0QlJvXkMVFvMpXXdd0WHgP+ssZYVC5hyzisD9T4HuX9X9W4RJVJU9H+Qt6Nc244hlIxyD5Zj9kzROy1l1aUkXTWx3mVAxLOs6TDyxiWx1etBSslhOZviRfg5DKl6KMc2lqC7cUpgJGegw5jVae6zc5RJMSEViEzVMrLxCXNZuz2oSZdrldlmVXAbsW1i7+evOacdv7/m7b3Zb3e7iVWyiR+gxeoLaaB910St0jHqIoDH6hD6jL85H56vzzfk+T21sLGoeoivm/PgN65Bbpw==</latexit>

783X

j=0

Handwritten Digit Recognition

length 784 vector
(784 input nodes)

weighted sums

(parameterized
by a weight

matrix W and a
bias b)

linear layer
with 10 nodes

Handwritten Digit Recognition

length 784 vector
(784 input nodes)

28x28 image

flatten

linear layer
with 10 nodes

final
output

weighted sums activation

(can be
thought of as

post-
processing)

(parameterized
by a weight

matrix W and a
bias b)

Handwritten Digit Recognition

final
output

activation

(can be
thought of as

post-
processing)

Many different activation functions possible

Example: Rectified linear unit (ReLU)
zeros out entries that are negative

4

3.5

4

-1

0.5

2

-4

3

-2

5

linear

final = np.maximum(0, linear)

linear layer
with 10 nodes

final

4

3.5

4

0

0.5

2

0

3

0

5

ReLU

Handwritten Digit Recognition

final
output

activation

(can be
thought of as

post-
processing)

Many different activation functions possible

Example: softmax converts a table of numbers
into a probability distribution

exp = np.exp(linear)
final = exp / exp.sum()

4

3.5

4

-1

0.5

2

-4

3

-2

5

linear layer
with 10 nodes

linear final

0.17

0.10

0.17

0.00

0.01

0.02

0.00

0.06

0.00

0.46

softmax

Handwritten Digit Recognition

final
output

activation

(can be
thought of as

post-
processing)

Many different activation functions possible

Example: linear activation does nothing

final = linear

4

3.5

4

-1

0.5

2

-4

3

-2

5

linear layer
with 10 nodes

linear final

4

3.5

4

-1

0.5

2

-4

3

-2

5

linearThis is equivalent to there being
no activation function

length 784 vector
(784 input nodes)

28x28 image

flatten

linear layer
with 10 nodes

final
output

weighted sums softmax

(parameterized
by a weight

matrix W and a
bias b)

Handwritten Digit Recognition
Pr(digit 0)

Pr(digit 1)

Pr(digit 2)

Pr(digit 9)

Pr(digit 3)

Pr(digit 4)

Pr(digit 5)

Pr(digit 6)

Pr(digit 7)

Pr(digit 8)

Desired result

Input

Handwritten Digit Recognition

Linear
(10 nodes)

Flatten Softmax

Training label: 6

Loss/“error” error

Popular loss function for
classification:

categorical cross entropy

Error is
averaged across

training
examples

Learning this neural
net means finding

W and b that
minimize categorical

cross entropy loss

1

estimated Pr(digit 6)
log

Also called
fully-connected or

dense layer

⚠ In PyTorch, softmax is
included as part of the cross

entropy loss

Input
Linear

(10 nodes)
Flatten Softmax

Training label: 6

Loss/“error” error

Popular loss function for
classification:

categorical cross entropy

1

estimated Pr(digit 6)
log

Input
Linear

(10 nodes)
Flatten Softmax

Training label: 5

Loss/“error” error

Popular loss function for
classification:

categorical cross entropy

1

estimated Pr(digit 5)
log

average
error

Handwritten Digit Recognition
Important: across different
training data, we are using

the same linear layer
(same W and b parameters)

Learning this neural net
means finding

W and b that minimize
categorical cross

entropy loss

(averaged across training examples)

Example:
2 training points

Input
Linear

(10 nodes)
Flatten Softmax

Training label: 6

Loss/“error” error

Handwritten Digit Recognition

Categorical
cross entropy

This neural net has a name: multinomial logistic regression
(when there are only 2 classes, it’s called logistic regression)

Input

Handwritten Digit Recognition

Flatten Linear
(512 nodes)

ReLU

Training label: 6

Loss error

Different linear layers; each has its
own weight matrix and bias vector

Softmax

Basic building block of
neural nets:

linear layer with
nonlinear activation

Linear
(10 nodes)

Categorical
cross entropy

Learning this neural net ⇒ learn parameters of both linear layers

Input

Handwritten Digit Recognition

Flatten Linear
(512 nodes),

ReLU

Training label: 6

Loss error

Linear
(10 nodes),

Softmax Important: in lecture,
I sometimes use this
shorthand notation

(specifying activation to
go with each linear layer)

Categorical
cross entropy

This neural net is called a multilayer perceptron
(# nodes need not be 512 & 10;

activations need not be ReLU and softmax)

PyTorch
• Designed to be like NumPy

• A lot of (but not all) function names are the same as numpy
(e.g., instead of calling np.sum, you would call torch.sum, etc)

• What’s the big difference then? Why not just use NumPy?

• PyTorch tensors keep track of what device they reside on
• ⚠ For example, trying to add a tensor stored on the CPU and a

tensor stored on a GPU will result in an error!

• PyTorch tensors can automatically store “gradient” information
(important for learning model parameters; details in later lecture)

PyTorch code is often harder to debug than NumPy code

There’s a PyTorch tutorial posted in supplemental reading

• ⚠ PyTorch does not use NumPy arrays and instead uses tensors
(so instead of np.array, you use torch.tensor)

Handwritten Digit Recognition

Demo

